Contextuality and quantum simulation of Pauli Hamiltonians

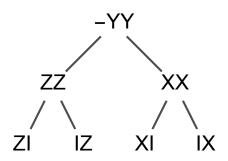
Will Kirby

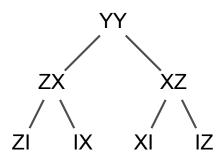
IBM Quantum

(work conducted at Tufts University with Peter Love

and Andrew Tranter)

Foundations of Quantum Computing 2023 (9/6/23)





IBM Quantum

Motivation

Studying measurements of collections of Pauli operators.

- Most typical basis for measuring observables in near term
- Even many LCU/block encoding constructions start with Pauli decomposition

Typical task: repeatedly run same circuit and measure different Pauli operators in observable

$$H = \sum_{i} \alpha_{i} P_{i}$$

Pauli operators review

- Notation: $\sigma_x \otimes \sigma_z = XZ$
- Self-inverse (eigenvalues ± 1)
- Basis for Hermitian operators
- Local Hamiltonians = linear combinations of poly(n) Pauli operators
- Either commute or anticommute:

e.g. XX, ZZ commute, XX, ZX anticommute

• Products are Pauli operators up to phase:

e.g. (XX)(ZZ) = -YY

Motivating question

When can we describe a set of Pauli observables "classically"?

- Need to pick a notion of classicality.
- Want notion of classicality to hold for any state (e.g., rules out stabilizer subtheory).
- Want notion to hold for any actions of observer/experimenter:
 - Restriction is on what set our model describes...
 - Observer could measure other Pauli operators not in our chosen set.
- Specific meaning of classicality we will use is noncontextual hidden-variable model.

Noncontextual hidden-variable model

Two components:

- 1. Collection of joint value assignments to observables in set.
- 2. Collection of probability distributions over joint value assignments.

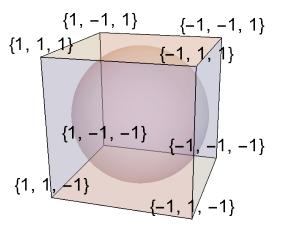
Given such a model, can interpret observables as having real, classical values at all times, which are revealed by measurements, with probability distributions describing our knowledge (or lack thereof).

Noncontextual hidden-variable model

Example:

Single qubit Paulis X, Y, Z

- Joint value assignments ~ corners of cube
- Joint probability distributions:
 - Corner ~ probability 1 for corresponding value assignment
 - Other points correspond to convex combinations of corners
 - Physically allowed probability distributions correspond to points in sphere



Contextual sets

Set of Pauli operators is *contextual* if impossible to build a noncontextual HVM for it.

Recall...

- · We wanted two features for our notion of classicality: state independence and "observer freedom"
- The latter will be important for our specific type of contextuality.

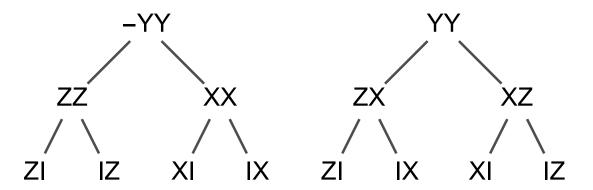
So, what could be an obstacle to constructing noncontextual HVM satisfying the above?

Example (Peres-Mermin square)

Suppose set is XI, IX, ZI, IZ

Observer is free to perform any physically-possible measurements.

 \Rightarrow Given a value assignment, can infer values assigned to additional observables below:

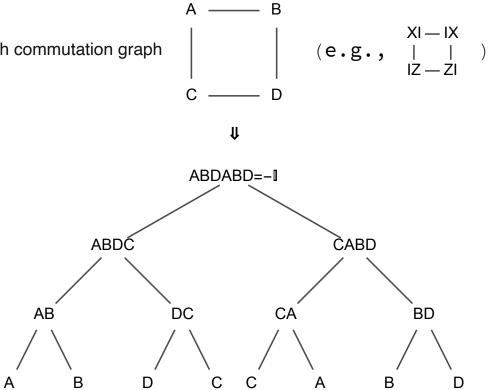


Value assignments must be noncontextual, i.e., cannot depend on observer's choice of measurement.

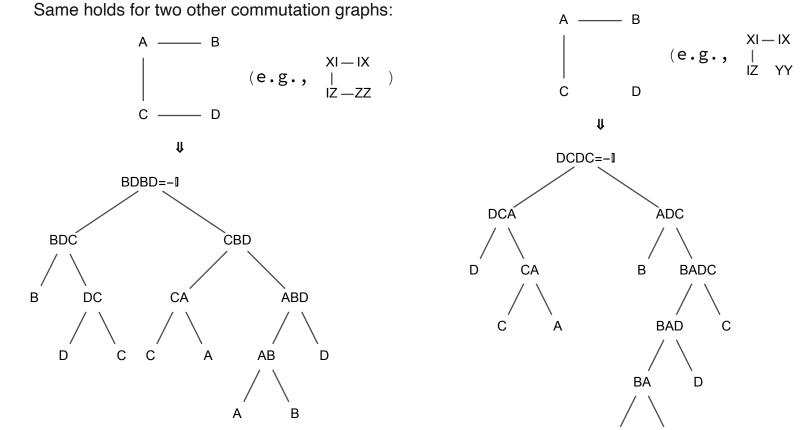
 \Rightarrow All value assignments in model must satisfy above inference relations. But this is impossible!

Generalization

For any Paulis A, B, C, D with commutation graph



Further generalization



А

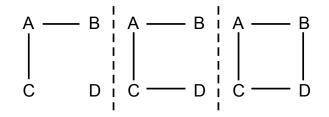
В

С

XI - IX

And that's basically it

Theorem [KL19]. A set of Pauli operators is *contextual* if and only if it contains a subset A, B, C, D with one of the following commutation graphs:

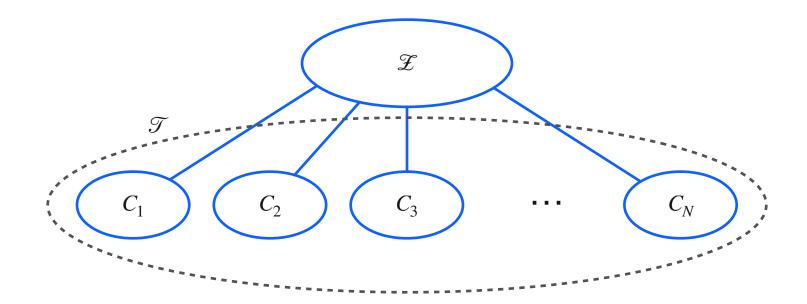


Equivalently, a set \mathscr{S} of Pauli operators is *noncontextual* if and only if it has the form $\mathscr{S} = \mathscr{Z} \cup \mathscr{T}$

where ...

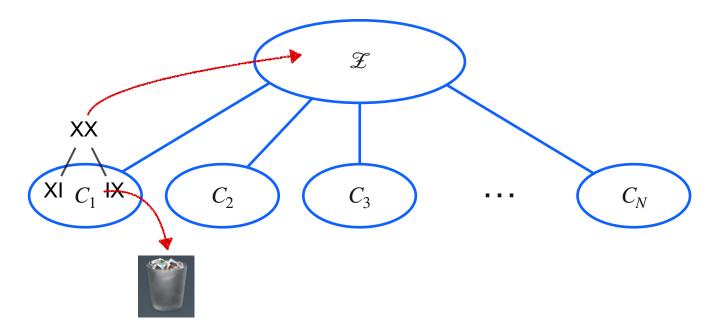
- \mathcal{Z} is the "center" of \mathcal{S} , i.e., contains all operators in \mathcal{S} that commute with all others.
- Commutation is an equivalence relation (transitive) on $\mathcal T$

A generic noncontextual set of Pauli operators



- Operators in $\mathcal Z$ commute with everything.
- Operators in the same C_i commute.
- Operators in different C_i anticommute.

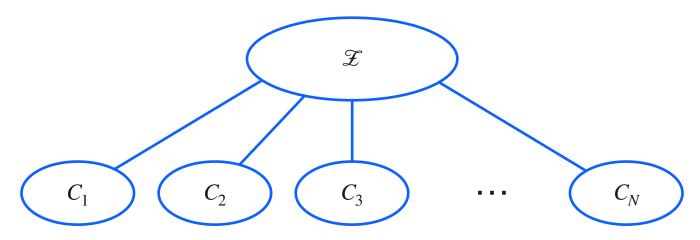
A standard generating set



Repeat: end up with one element in each C_i plus expanded \mathcal{Z}

- all Paulis in original set generated by inference.

A standard generating set



Now each C_i is a single Pauli, \mathscr{Z} is a set of commuting Paulis

 \Rightarrow can find an independent generating set for $\overline{\mathscr{Z}}$: call its elements G_i

 \Rightarrow generic noncontextual Hamiltonian:

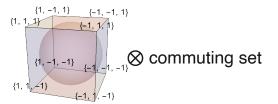
$$H = \sum_{B \in \mathcal{Z}} \alpha_B \prod_{j \in \mathcal{J}_B} G_j + \sum_{B \in \mathcal{Z}} \prod_{j \in \mathcal{J}_B} G_j \sum_{i=1}^N \alpha_{B,i} C_i \quad = \quad \sum_{B \in \mathcal{Z}} \left(\alpha_B + \sum_{i=1}^N \alpha_{B,i} C_i \right) \prod_{j \in \mathcal{J}_B} G_j$$

A standard generating set

Any anticommuting set satisfies $\sum \langle P_i \rangle^2 \leq 1$, with equality when the set is maximal and the state is pure.

• I.e., anticommuting sets of Pauli operators look like Bloch spheres, just potentially in more than 3 dimensions.

 \Rightarrow generic noncontextual generating set:



Two types of sets that we already knew were classical.

 \Rightarrow Under our assumption of "observer freedom" (i.e., inference outside the original set is possible), you can't get anything else and remain noncontextual.

3-qubit example: *XII*, *YII*, *ZII*, *IZI*, *IIZ*

anticommute commute

For a noncontextual set, can construct noncontextual HVM!

- Can prove: every quantum state corresponds to a probability distribution over joint value assignments.
- BUT, don't know how to efficiently classically parameterize that complete set of probability distributions.

What to do instead?

Let $H = \sum_{P \in \mathcal{S}} \alpha_P P$ be observable over noncontextual set \mathcal{S} , e.g., $H = \alpha_1 X I I + \alpha_2 Y I I + \alpha_3 Z I I + \alpha_4 I Z I + \alpha_5 I I Z$ anticommute

\Rightarrow *H* and commuting part of \mathscr{S} share an eigenbasis

- \Rightarrow Every eigenvalue of H captured by common eigenvectors of commuting part of \mathcal{S}
- \Rightarrow Parameterize those common eigenvectors by sets of eigenvalues, e.g., $(IZI \mapsto \pm 1, IIZ \mapsto \pm 1)$
- \Rightarrow Parameterize anticommuting *generators* by their expectation values (which recall satisfy $\sum_{i} \langle P_i \rangle^2 \leq 1$)

All other operators in set map to products of these

AND exp val of product = product of exp vals when all but one of exp vals are actually eigenvalues!

$$\langle \psi | AB | \psi \rangle = \langle \psi | A\lambda_B | \psi \rangle = \langle \psi | A | \psi \rangle \lambda_B = \langle \psi | A | \psi \rangle \langle \psi | B | \psi \rangle$$

Result: every eigenvalue of noncontextual H is included in the set given by

$$\langle H \rangle = \sum_{B \in \mathscr{Z}} \left(\alpha_B + \sum_{i=1}^N \alpha_{B,i} r_i \right) \prod_{j \in \mathscr{J}_B} q_j$$

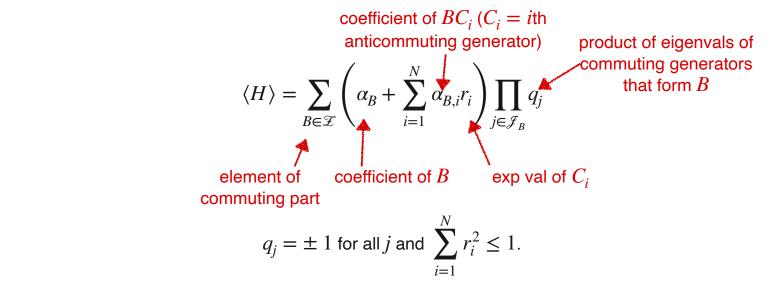
where

$$q_j = \pm 1$$
 for all j and $\sum_{i=1}^N r_i^2 \le 1$.

Punchline: classical function for eigenvalues of any noncontextual Hamiltonian/observable.

Result: every eigenvalue of noncontextual H is included in the set given by

where



Punchline: classical function for eigenvalues of any noncontextual Hamiltonian/observable.

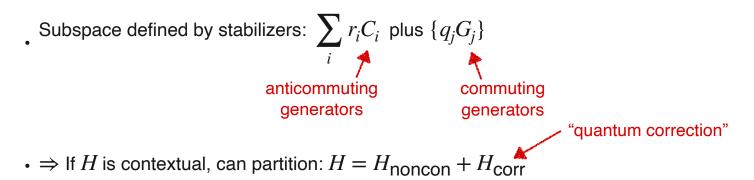
So: for noncontextual *H*, every energy can be written as classical $E(\vec{q}, \vec{r})$, with $\vec{q} \in \{\pm 1\}^M$ and $|\vec{r}| \le 1$.

Notes:

- Expressed via exp vals; could instead think of (\vec{q}, \vec{r}) as parameterizing prob. dists. in noncontextual HVM
- Exp vals ~ marginals of probability distribution
- From exp val side, what makes this classical is *not* that energies can be expressed in terms of exp vals of terms
- It is that you can classically check whether set of exp vals ~ valid quantum state not possible in general!
 Implication:
- Noncontextual Hamiltonian problem is in NP, rather than QMA (\vec{q}, \vec{r}) plus $E(\vec{q}, \vec{r})$, aka set of exp vals, is classical witness

Beyond noncontextual sets

• Ground state energy witness (\vec{q}, \vec{r}) for noncontextual $H \leftrightarrow$ subspace of quantum states

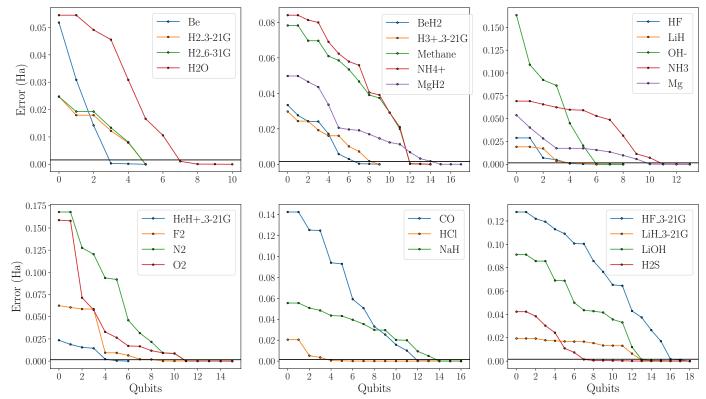


- 1. Solve H_{noncon} classically using noncontextual model.
- 2. Choose number of qubits n_{corr} for quantum correction.
- 3. Project H_{corr} into subspace defined by $n n_{\text{corr}}$ of the stabilizers.
- 4. Solve projected H_{corr} on quantum computer.

"Contextual subspace"

- Previously called this "contextual subspace VQE"
- "Contextual subspace" = subspace in which we solve terms not in noncontextual part
- Not really specific to VQE though...
- Most similar to active spaces: choosing subspace in which to solve "important" part of full correlated problem.
- Also similar to qubit tapering, but in this case, tapering off qubits according to symmetries of noncontextual part of Hamiltonian.

Results for some small molecules



Error vs # qubits used, assuming ideal ground state of projected Hamiltonian in contextual subspace is found. All STO-3G unless specified otherwise.

Thank you!

Main references for this talk:

- William Kirby and Peter Love. *Contextuality test of the nonclassicality of variational quantum eigensolvers*. Phys. Rev. Lett. 123:200501 (2019).
- William Kirby and Peter Love. *Classical simulation of noncontextual Pauli Hamiltonians*. Phys. Rev. A 102:032418 (2020).
- William Kirby, Andrew Tranter, and Peter Love. Contextual subspace variational quantum eigensolver. Quantum 5:456 (2021).

Subsequent work by wonderful collaborators:

- Tim Weaving, Alexis Ralli, William Kirby, Andrew Tranter, Peter Love, and Peter Coveney. *A stabilizer framework for contextual subspace VQE and the noncontextual projection ansatz.* J. Chem. Theory Comput. 19:3:808 (2023).
- Alexis Ralli, Tim Weaving, Andrew Tranter, William Kirby, Peter Love, and Peter Coveney. Unitary partitioning and the contextual subspace variational quantum eigensolver. Phys. Rev. Research 5, 013095 (2023).