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Motivation  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Studying measurements of collections of Pauli operators.

• Most typical basis for measuring observables in near term

• Even many LCU/block encoding constructions start with Pauli decomposition

Typical task: repeatedly run same circuit and measure different Pauli operators in observable

H = ∑
i

αiPi



Pauli operators review  

• Notation: 

• Self-inverse (eigenvalues )

• Basis for Hermitian operators

• Local Hamiltonians = linear combinations of  Pauli operators

• Either commute or anticommute:

e.g.  commute,  anticommute

• Products are Pauli operators up to phase:

e.g. 

σx ⊗ σz = XZ

±1

poly(n)

XX, ZZ XX, ZX

(XX )(ZZ ) = − YY
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Motivating question
When can we describe a set of Pauli observables “classically”?

• Need to pick a notion of classicality.

• Want notion of classicality to hold for any state (e.g., rules out stabilizer subtheory).

• Want notion to hold for any actions of observer/experimenter:

• Restriction is on what set our model describes…

• Observer could measure other Pauli operators not in our chosen set.

• Specific meaning of classicality we will use is noncontextual hidden-variable model.
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Noncontextual hidden-variable model
Two components:

1. Collection of joint value assignments to observables in set.

2. Collection of probability distributions over joint value assignments.

Given such a model, can interpret observables as having real, classical values at all times, which 

are revealed by measurements, with probability distributions describing our knowledge (or lack 

thereof).
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Noncontextual hidden-variable model
Example:

Single qubit Paulis 

• Joint value assignments ~ corners of cube

• Joint probability distributions:

• Corner ~ probability 1 for corresponding value assignment

• Other points correspond to convex combinations of 
corners

• Physically allowed probability distributions correspond to 
points in sphere

X, Y, Z

6



Contextual sets
Set of Pauli operators is contextual if impossible to build a noncontextual HVM for it.

Recall…

• We wanted two features for our notion of classicality: state independence and “observer freedom”

• The latter will be important for our specific type of contextuality.

So, what could be an obstacle to constructing noncontextual HVM satisfying the above?
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Example (Peres-Mermin square)
Suppose set is 

Observer is free to perform any physically-possible measurements.

 Given a value assignment, can infer values assigned to additional observables below:

Value assignments must be noncontextual, i.e., cannot depend on observer’s choice of measurement.

 All value assignments in model must satisfy above inference relations. But this is impossible!

XI, IX, ZI, IZ

⇒

⇒
8
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Generalization
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(e.g., )

A B

C D

(e.g.,
XI IX

IZ ZI
)

⇓

CD

AB

A B D

CA

AC

DC

B

ABDC

BD

CABD

ABDABD=-

For any Paulis  with commutation graphA, B, C, D



Further generalization
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Same holds for two other commutation graphs:

(e.g., )

A B

C D

(e.g.,
XI IX

IZ YY
)

⇓

AC

D

DBA

C

B

AB

CA

BAD

DCA

BADC

ADC

DCDC=-

(e.g., )

A B

C D

(e.g.,
XI IX

IZ ZZ
)

⇓

CD

B

BA

D

CA

AC

DC

AB

BDC

ABD

CBD

BDBD=-



And that’s basically it
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Theorem [KL19]. A set of Pauli operators is contextual if and only if it contains a subset  
with one of the following commutation graphs:

A, B, C, D

A B

C D

A B

C D

A B

C D

Equivalently, a set  of Pauli operators is noncontextual if and only if it has the form

where…
•  is the “center” of , i.e., contains all operators in  that commute with all others.
• Commutation is an equivalence relation (transitive) on 

𝒮
𝒮 = 𝒵 ∪ 𝒯

𝒵 𝒮 𝒮
𝒯



A generic noncontextual set of Pauli operators
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𝒵

C1 C2 C3 CN
…

𝒯

• Operators in  commute with everything.
• Operators in the same  commute.
• Operators in different  anticommute.

𝒵
Ci

Ci



A standard generating set
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𝒵

C1 C2 C3 CN
…

Repeat: end up with one element in each  plus expanded 

— all Paulis in original set generated by inference.

Ci 𝒵

-YY

ZZ XX

ZI IZ XI IX



A standard generating set
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𝒵

C1 C2 C3 CN
…

Now each  is a single Pauli,  is a set of commuting Paulis

 can find an independent generating set for : call its elements 

 generic noncontextual Hamiltonian:

Ci 𝒵

⇒ 𝒵 Gj

⇒

H = ∑
B∈𝒵

αB ∏
j∈𝒥B

Gj + ∑
B∈𝒵

∏
j∈𝒥B

Gj

N

∑
i=1

αB,iCi = ∑
B∈𝒵 (αB +

N

∑
i=1

αB,iCi) ∏
j∈𝒥B

Gj



A standard generating set
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Any anticommuting set satisfies , with equality when the set is maximal and the state is pure.

• I.e., anticommuting sets of Pauli operators look like Bloch spheres, just potentially in more than 3 dimensions.

 generic noncontextual generating set:                               

Two types of sets that we already knew were classical.

 Under our assumption of “observer freedom” (i.e., inference outside the original set is possible), you can’t get 
anything else and remain noncontextual.

3-qubit example: 

∑
i

⟨Pi⟩2 ≤ 1

⇒ ⊗ commuting set

⇒

XII, YII, ZII

anticommute

, IZI, IIZ

commute



What are computational implications?
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For a noncontextual set, can construct noncontextual HVM!

• Can prove: every quantum state corresponds to a probability distribution over joint value assignments.

• BUT, don’t know how to efficiently classically parameterize that complete set of probability distributions.

What to do instead?



What are computational implications?
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Let  be observable over noncontextual set , e.g., 

  and commuting part of  share an eigenbasis

 Every eigenvalue of  captured by common eigenvectors of commuting part of 

 Parameterize those common eigenvectors by sets of eigenvalues, e.g., 

 Parameterize anticommuting generators by their expectation values (which — recall — satisfy )

All other operators in set map to products of these

AND exp val of product = product of exp vals when all but one of exp vals are actually eigenvalues!

H = ∑
P∈𝒮

αPP 𝒮 H = α1XII + α2YII + α3ZII

anticommute

+ α4IZI + α5IIZ

commute

⇒ H 𝒮

⇒ H 𝒮

⇒ (IZI ↦ ± 1, IIZ ↦ ± 1)

⇒ ∑
i

⟨Pi⟩2 ≤ 1

⟨ψ |AB |ψ⟩ = ⟨ψ |AλB |ψ⟩ = ⟨ψ |A |ψ⟩λB = ⟨ψ |A |ψ⟩⟨ψ |B |ψ⟩



What are computational implications?
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Result: every eigenvalue of noncontextual  is included in the set given by

where

.

Punchline: classical function for eigenvalues of any noncontextual Hamiltonian/observable.

H

⟨H⟩ = ∑
B∈𝒵 (αB +

N

∑
i=1

αB,iri) ∏
j∈𝒥B

qj

qj = ± 1 for all j and 
N

∑
i=1

r2
i ≤ 1



What are computational implications?
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Result: every eigenvalue of noncontextual  is included in the set given by

where

.

Punchline: classical function for eigenvalues of any noncontextual Hamiltonian/observable.

H

⟨H⟩ = ∑
B∈𝒵 (αB +

N

∑
i=1

αB,iri) ∏
j∈𝒥B

qj

qj = ± 1 for all j and 
N

∑
i=1

r2
i ≤ 1

element of 
commuting part

coefficient of B

coefficient of  ( th 
anticommuting generator)

BCi Ci = i

exp val of Ci

product of eigenvals of 
commuting generators 

that form B



What are computational implications?
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So: for noncontextual , every energy can be written as classical , with  and .

Notes:

• Expressed via exp vals; could instead think of  as parameterizing prob. dists. in noncontextual HVM

• Exp vals ~ marginals of probability distribution

• From exp val side, what makes this classical is not that energies can be expressed in terms of exp vals of terms

• It is that you can classically check whether set of exp vals ~ valid quantum state — not possible in general!

Implication:

• Noncontextual Hamiltonian problem is in NP, rather than QMA —  plus , aka set of exp vals, is 

classical witness

H E( ⃗q, ⃗r ) ⃗q ∈ {±1}M | ⃗r | ≤ 1

( ⃗q, ⃗r )

( ⃗q, ⃗r ) E( ⃗q, ⃗r )



Beyond noncontextual sets
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• Ground state energy witness  for noncontextual   subspace of quantum states

•
Subspace defined by stabilizers:   plus 

•  If  is contextual, can partition: 

1. Solve  classically using noncontextual model.

2. Choose number of qubits  for quantum correction.

3. Project  into subspace defined by  of the stabilizers.

4. Solve projected  on quantum computer.

( ⃗q, ⃗r ) H ↔

∑
i

riCi {qjGj}

⇒ H H = Hnoncon + Hcorr

Hnoncon

ncorr

Hcorr n − ncorr

Hcorr

anticommuting 
generators

commuting 
generators

“quantum correction”



“Contextual subspace”
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• Previously called this “contextual subspace VQE”

• “Contextual subspace” = subspace in which we solve terms not in noncontextual part

• Not really specific to VQE though…

• Most similar to active spaces: choosing subspace in which to solve “important” part of full correlated 

problem.

• Also similar to qubit tapering, but in this case, tapering off qubits according to symmetries of 

noncontextual part of Hamiltonian.



Results for some small molecules

23

0 2 4 6 8 10

0.00

0.01

0.02

0.03

0.04

0.05

E
rr

or
(H

a)

Be

H2 3-21G

H2 6-31G

H2O

0 2 4 6 8 10 12 14 16

0.00

0.02

0.04

0.06

0.08 BeH2

H3+ 3-21G

Methane

NH4+

MgH2

0 2 4 6 8 10 12

0.000

0.025

0.050

0.075

0.100

0.125

0.150
HF

LiH

OH-

NH3

Mg

0 2 4 6 8 10 12 14
Qubits

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

E
rr

or
(H

a)

HeH+ 3-21G

F2

N2

O2

0 2 4 6 8 10 12 14 16
Qubits

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14 CO

HCl

NaH

0 2 4 6 8 10 12 14 16 18
Qubits

0.00

0.02

0.04

0.06

0.08

0.10

0.12 HF 3-21G

LiH 3-21G

LiOH

H2S

Error vs # qubits used, assuming ideal ground state of projected Hamiltonian in contextual subspace is 
found. All STO-3G unless specified otherwise.



Thank you!
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