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Motivation and outline  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Goal: estimate ground state energy of quantum 
Hamiltonian. 
 
Classically challenging due to exponential Hilbert 
space dimension*.

Outline of this talk:

1. Overview of quantum Krylov algorithm

2. Overview of error bound results

*Assuming general, hard case: sufficiently entangled, 
supported on exponentially-many basis states, etc.

Example applications: 

• Condensed matter physics

• Nuclear physics

• High-energy physics

• Quantum chemistry

A. Kandala et al., Nature 549, 242 (2017).



Lanczos/Arnoldi method  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= classical method for approximating lowest eigenvalues.

(Very) high-level idea:

1. Initial guess 

2.  = project  onto span

|ψ0⟩ ⇒ Ĥ |ψ0⟩ ⇒ ⋯ ⇒ ĤD−1 |ψ0⟩

(H, S) H [ |ψ0⟩, Ĥ |ψ0⟩, Ĥ2 |ψ0⟩, . . . , ĤD−1 |ψ0⟩]

V

Ĥ VV† = H VV† = S,

3.     Lowest eigenvalue of  i.e., of , approximates lowest eigenvalue of (H, S) Hv = λSv Ĥ

Krylov space



Lanczos/Arnoldi method  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Advantage: converges exponentially with D (in ∞ precision arithmetic).

Disadvantage: classically, requires storing entire statevectors  ⇒ exponential overhead.

Can we construct a quantum version that mitigates statevector overhead
while keeping fast convergence?1

Ĥi |ψ0⟩

1 Parrish and McMahon, https://arxiv.org/abs/1909.08925; Motta et al., https://arxiv.org/abs/2312.00178;
and many more!

Recent review!



Quantum “Lanczos method” = “Quantum Krylov” 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Options for generating Krylov space: multiply  by…

• Powers of  — same as original Lanczos ⇒ nontrivial on quantum but possible in principle.1

•  — this version claimed “Qlanczos.”2

•  — arises naturally from block encoding.3

•  — many good options e.g. Trotterization, qubitization, etc.

Will focus on last version in this talk. 

|ψ0⟩

Ĥ

e−Ĥk dt

Tk(Ĥ )

eiĤk dt

1Seki and Yunoki, PRX Quantum 2, 010333 (2021); 2Motta et al., Nat. Phys. 16, 205–210 (2020); 
3Kirby et al., Quantum 7, 1018 (2023).



Quantum Krylov with real time-evolutions 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Majority of works have focused on Krylov states generated by real time-evolution:

  for 

Need to estimate on quantum computer

,

 

for each ,

then classically calculate lowest eigenvalue of output.

V = [ |ψ0⟩, Û |ψ0⟩, Û2 |ψ0⟩, . . . , ÛD−1 |ψ0⟩] Û = eiĤ dt

Hjk = ⟨ψ0 | (Ûj)†ĤÛk |ψ0⟩

Sjk = ⟨ψ0 | (Ûj)†Ûk |ψ0⟩

j, k = 0,1,...,D − 1

Hv = λSv ⇒



Real-time quantum Krylov with errors 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Ideal 

Worry #1: ill-conditioning.
•  has exponentially-growing condition number with 
•  may not even be positive semidefinite.

Resolution: regularization.1

• Project  onto eigenspaces of  with eigenvalues above threshold .
• Epperly et al. showed this step introduces energy error linear in .

• Epperly et al. also bounded total error in lowest energy estimate in presence of noise …
• Goal: but bound is sublinear in . Can we improve to linear?

(H, S) errors (H′￼, S′￼)

S D
⇒ S′￼

(H′￼, S′￼) S′￼ ϵ > 0
ϵ

η
η

1Epperly, Lin, Nakatsukasa, SIMAX 43(3), 1263-1290 (2022).



Real-time quantum Krylov with errors 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Ideal 

Inspiration: common “folklore” claim in quantum computing community…
“The reason quantum Krylov algorithms are robust to errors is that the errors just
  perturb the subspace, and then you still find the lowest energy in the subspace.”

In other words, for , errors cause .

This is not true in general!

We show that
• generic error-ful  after regularization can be expressed as , such that

1. we can bound  in terms of the error rate
2.  contains a perturbed approximate ground state of 

(H, S) errors (H′￼, S′￼)

H = V†Ĥ V, S = V†V V → V′￼

(H′￼, S′￼) (V′￼†Ĥ′￼V′￼, V′￼†V′￼)
∥Ĥ′￼− Ĥ∥

span V′￼ Ĥ



Main ideas for lower bound
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Idea #1: work with regularized pair 

• projector onto eigenspaces of  with eigenvalues above 

• matrix pair we actually solve to get approximate energies (removing the “projected out” dim’ns)

(H′￼′￼, S′￼′￼) = (Π′￼H′￼Π′￼, Π′￼S′￼Π′￼)
Π′￼= S′￼ ϵ > 0
(H′￼′￼, S′￼′￼) =



Main ideas for lower bound
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Idea #2: choose a convenient  such that 

• Let  be polar decomposition of , so  is  with orthonormal columns

• Let , with  any  unitary  

V′￼ V′￼†V′￼= S′￼′￼

V = F S V F 2n × D

V′￼= FG S′￼′￼ G D × D ⇒ V′￼†V′￼= S′￼′￼G†F†FG S′￼′￼= S′￼′￼



Main ideas for lower bound
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Idea #3: choose  such that , and  everywhere else (outside span )

• Corresponding expression: 

• Use freedom in  to minimize 

• Good choice turns out to be such that polar decomp of 

Aside for anyone actually trying to follow the above:   and  

Ĥ′￼ V′￼†Ĥ′￼V′￼= H′￼′￼ Ĥ′￼= Ĥ (V′￼)

Ĥ′￼= Ĥ + V′￼S′￼′￼+ (H′￼− V′￼†Ĥ V′￼) S′￼′￼+V′￼†

G ∥Ĥ′￼− Ĥ∥

G Π′￼SΠ′￼= SΠ′￼

S′￼′￼+V′￼† ⋅ V′￼= S′￼′￼+S′￼′￼= Π′￼ Π′￼H′￼Π′￼= H′￼′￼



Main ideas for lower bound
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Proof of lower bound proceeds from

Bounding each term yields

Choice of “free” unitary  only matters in second term.

∥Ĥ′￼− Ĥ∥ = ∥V′￼S′￼′￼+ (H′￼− V′￼†Ĥ V′￼) S′￼′￼+V′￼†∥ = ∥ S′￼′￼+ (H′￼− V′￼†Ĥ V′￼) S′￼′￼+∥

≤ ∥ S′￼′￼+ (H′￼− H) S′￼′￼+∥ + ∥ S′￼′￼+V†Ĥ (V − V′￼) S′￼′￼+∥ + ∥ S′￼′￼+ (V† − V′￼†) Ĥ V′￼ S′￼′￼+∥

∥Ĥ′￼− Ĥ∥ ≤
∥H′￼− H∥ + ( 2 + 1)∥S′￼− S∥∥Ĥ∥

ϵ

G



Main ideas for lower bound
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• Weyl’s theorem  above upper bounds difference between lowest eigenvalues  and  of  and 

• Rayleigh-Ritz   lower bounds lowest eigenvalue of 

• Combine:  lower bounds ground state energy error of noisy, regularized matrix pair  
with respect to , which we are trying to estimate

∥Ĥ′￼− Ĥ∥ ≤
∥H′￼− H∥ + ( 2 + 1)∥S′￼− S∥∥Ĥ∥

ϵ

⇒ E′￼0 E0 Ĥ′￼ Ĥ

⇒ E′￼0 (H′￼′￼, S′￼′￼) = (V′￼†Ĥ′￼V′￼, V′￼†V′￼)

−∥Ĥ′￼− Ĥ∥ (H′￼′￼, S′￼′￼)
E0



Upper bound rough ideas
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Similar scheme to lower bound:

• work with 

• Now will use particular point  in Krylov space to upper bound lowest energy: 

• so, choose convenient  such that ,  

• Prove bound on  and also show that  is an approximate ground state
• Use similar method to Epperly, Lin, and Nakatsukasa (2022).

• Result:

for ,  ampl. of ground state in init state,  spectral gap

(H′￼′￼, S′￼′￼)
c′￼
V′￼, Ĥ′￼ c′￼†V′￼†V′￼c′￼= c′￼†S′￼′￼c′￼ c′￼†V′￼†Ĥ′￼V′￼c′￼= c′￼†H′￼′￼c′￼

∥Ĥ′￼− Ĥ∥ V′￼c′￼

E′￼0 − E0 ≤
12∥Ĥ∥
|γ′￼0 |2 (D +

∥Ĥ∥
Δ′￼

+
1
12 ) η + Dϵ + 4 (1 +

πΔ′￼
4∥Ĥ∥ )

−2D

η = max (∥S′￼− S∥,
∥H′￼− H∥

∥Ĥ∥ ) γ′￼0 ≈ Δ′￼≈



Final thoughts
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• You can think of errors in quantum Krylov as perturbing the Krylov space, as long as you let them perturb the 

Hamiltonian as well!

• You can use this to get lower and upper bounds that both look linear in …

• BUT lower bound is  and upper bound is .

• Quantifies idea that threshold is trading off between upper and lower bounds.

• In practice  is often found to yield good convergence, leading to open questions:

• How generally true is that?

• Is there a tighter lower bound? (Since mine is  in that case!)

Thank you! Questions?

https://arxiv.org/abs/2401.01246

η

O ( η
ϵ ) O (η + ϵ)

ϵ = O(η)

O(1)

https://arxiv.org/abs/2401.01246


Extra: estimating matrix elements (simple version)
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Targets: ,       .Hjk = ⟨ψ0 | (Ûj)†ĤÛk |ψ0⟩ Sjk = ⟨ψ0 | (Ûj)†Ûk |ψ0⟩

Hadamard… sorry!

Yields ,      ⟨X⟩a = Re[⟨ψ0 | (Uj)†PUk |ψ0⟩] ⟨Y ⟩a = Im[⟨ψ0 | (Uj)†PUk |ψ0⟩]

Can approach using Hadamard test:


