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Motivation  
Example applications: 

• Quantum chemistry.

• Condensed matter physics.

• Nuclear physics.

• High-energy physics.
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Estimate ground state energy of quantum 
Hamiltonian. 
 
Abstract perspective: approximate lowest 
eigenvalue of Hermitian matrix.  
 
Goal is classically challenging due to exponential 
Hilbert space dimension*.

M. Kreshchuk et al., Entropy 23, 59 (2021).

*Assuming general, hard case: sufficiently entangled, 
supported on exponentially-many basis states, etc.



Lanczos method  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= classical method for approximating lowest eigenvalues.

High-level idea:

1. Initial guess 

2.  = project  onto span

|ψ0⟩ ⇒ H |ψ0⟩ ⇒ ⋯ ⇒ HD−1 |ψ0⟩

(H, S) H [ |ψ0⟩, H |ψ0⟩, H2 |ψ0⟩, . . . , HD−1 |ψ0⟩]

V

H VV† = H VV† = S,

3.     Lowest eigenvalue of  i.e., of , approximates lowest eigenvalue of (H, S) Hv = λSv H

Krylov space



Lanczos method  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Caveat: typically in classical Lanczos(-like) methods, would orthogonalize along the way… challenging in 
quantum implementations.

Advantage: converges exponentially with D (in ∞ precision arithmetic).

Disadvantage: classically, requires storing entire statevectors  ⇒ exponential overhead.

Can we construct a quantum version that mitigates statevector overhead
while keeping fast convergence?1

Hi |ψ0⟩

1 Klymko et al., PRX Quantum 3, 020323 (2022); Epperly et al., SIAM J. Mat. An. Appl. 43, 1263-1290 (2022);
and many more!



Quantum “Lanczos method” = “Quantum Krylov” 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Options for generating Krylov space: multiply  by…

• Powers of  — same as original Lanczos ⇒ nontrivial on quantum but possible in principle.1

•  — this version claimed “Qlanczos.”

•  — many good options e.g. Trotterization, qubitization, etc.

•  — arises naturally from block encoding.

Will focus on last two in this talk. 

|ψ0⟩

H

e−Hk dt

eiHk dt

Tk(H )

1Seki and Yunoki, PRX Quantum 2, 010333 (2021)



Quantum Krylov with real time-evolutions 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Majority of works have focused on Krylov states generated by real time-evolution:

  for 

Need to estimate 

,

 

for each .

V = [ |ψ0⟩, U |ψ0⟩, U2 |ψ0⟩, . . . , UD−1 |ψ0⟩] U = eiH dt

Hjk = ⟨ψ0 | (Uj)†HUk |ψ0⟩

Sjk = ⟨ψ0 | (Uj)†Uk |ψ0⟩

j, k = 0,1,...,D − 1



Estimating matrix elements (simple version)
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Targets: ,       .Hjk = ⟨ψ0 | (Uj)†HUk |ψ0⟩ Sjk = ⟨ψ0 | (Uj)†Uk |ψ0⟩

Hadamard… sorry!

Yields ,      ⟨X⟩a = Re[⟨ψ0 | (Uj)†PUk |ψ0⟩] ⟨Y ⟩a = Im[⟨ψ0 | (Uj)†PUk |ψ0⟩]

Can approach using Hadamard test:*

*Cortes and Gray, 2021.



Estimating matrix elements (better version)
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Change target slightly: ,       .

Suppose Hamiltonian preserves particle number (Hamming weight)…

Circuit #2: 

Ujk = ⟨ψ0 | (Uj)†UUk |ψ0⟩ Sjk = ⟨ψ0 | (Uj)†Uk |ψ0⟩

1
4

(⟨0 | + ⟨ψ0 | ) |Up | ( |0⟩ + |ψ0⟩)
2

=
1
4 ( |⟨0 |Up |0⟩ |2 + |⟨ψ0 |Up |ψ0⟩ |2 + 2Re[⟨0 |Up |0⟩⟨ψ0 |Up |ψ0⟩])

*Cortes and Gray, 2022.Circuit #1

must have nonzero Hamming weight



Quantum Krylov with real time-evolutions 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Summary:

• Estimate ,  via Hadamard(-ish) tests and repeated sampling.

• Depending on Hamiltonian, can sometimes avoid controlled time-evolutions using symmetries.1

• Advantage: can use crude approximations for time-evolution to get low circuit depth.

• Disadvantage: time-evolution always approximated — more accuracy requires more depth.

Hjk Sjk

1Cortes and Gray, Phys. Rev. A 105, 022417 (2022).



Quantum Krylov from block encoding  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The most accurate simulations of time-evolution require Hamiltonian input as block encoding.1

Block encoding: for  on  qubits (s.t. ), find  on  qubits s.t.H n ∥H∥ ≤ 1 U m + n

1Low and Chuang, Quantum 3 (2019).



Quantum Krylov from block encoding  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Brief proof:
1. Let  and 

2.

3.

H |λ⟩ = λ |λ⟩ U = |G⟩⟨G | ⊗ H + . . .

⇒ U |G⟩ |λ⟩ = λ |G⟩ |λ⟩ + 1 − λ2 | ⊥ ⟩ ⇒ U ∼ (
λ ⋅

1 − λ2 ⋅ )
U2 = 1 ⇒ U ∼

λ 1 − λ2

1 − λ2 −λ

reflection

⇒ RU ∼
λ 1 − λ2

− 1 − λ2 λ

rotation



Quantum Krylov from block encoding  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⇒ Can use block encoding to exactly construct 

Recall: Lanczos method ~ project  onto 

Tj(H ) |ψ0⟩
H

span{ |ψ0⟩, H |ψ0⟩, H2 |ψ0⟩, . . . , HD−1 |ψ0⟩}
= span{ |ψ0⟩, T1(H ) |ψ0⟩, T2(H ) |ψ0⟩, . . . , TD−1(H ) |ψ0⟩}



Quantum Krylov from block encoding  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for . In other words, need to estimate

for .

Hjk = ⟨ψ0 |Tj(H )HTk(H ) |ψ0⟩

=
1
4 (⟨Ti+j+1(H )⟩0

+ ⟨T|i+j−1|(H )⟩0
+ ⟨T|i−j+1|(H )⟩0

+ ⟨T|i−j−1|(H )⟩0)

Sjk = ⟨ψ0 |Tj(H )Tk(H ) |ψ0⟩ =
1
2 (⟨Ti+j(H )⟩0

+ ⟨T|i−j|(H )⟩0)
j, k = 0,1,2,...,D − 1

⟨Tk(H )⟩0 = ⟨ψ0 |Tk(H ) |ψ0⟩

k = 0,1,2,...,2D − 1



Quantum Krylov from block encoding  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⇒ ⟨Tk(H )⟩0 = ⟨ψ0 |Tk(H ) |ψ0⟩ = (⟨G | ⊗ ⟨ψ0 | )(RU )k( |G⟩ ⊗ |ψ0⟩)

=
(⟨G | ⊗ ⟨ψ0 | )(UR)⌊k/2⌋ R (RU )⌊k/2⌋( |G⟩ ⊗ |ψ0⟩) if k is even,
(⟨G | ⊗ ⟨ψ0 | )(UR)⌊k/2⌋

⟨Ψk|

U (RU )⌊k/2⌋( |G⟩ ⊗ |ψ0⟩)
|Ψk⟩

if k is odd .

Since



Quantum Krylov from block encoding  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That yields the necessary circuits: for each …k = 0,1,2,...,D − 1

Prepare |Ψk⟩ Measure  or R U

U = ∑
i

| i⟩⟨i | ⊗ Pi



Regularizing the Krylov space
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• Either real-time or block-encoding Krylov methods yield noisy estimates of .

• Want to solve .

• Ill-conditioned if  is ill-conditioned ⇒ need to regularize.

• “Canonical orthogonalization” or “thresholding”: project  onto eigenspaces of  above threshold .

•  is metric in Krylov space ⇒ choose threshold ~ noise rate ⇒ discards vectors compatible with 0.

(H, S)

Hv = λSv

S

(H, S) S ϵ

S

H S, H′￼
λ1

λ2
⋱

λi
⋱

,
diagonalize S

H̃ S̃,
project

ϵ



Error analysis
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Same for real-time and block-encodingRequires modification

• Real-time: analyzed in Epperly et al., SIAM J. Mat. An. Appl. 43, 1263-1290 (2022).

• Block-encoding: in our paper, modification of Epperly’s analysis.

• Three main error terms:

• First two terms high-level idea of proof:

• Krylov space = span  = 

• ⇒ Best poly approx to delta function at  = approx ground space projector in Krylov space.

• Thresholding ⇒ perturbation of Chebyshev expansion coefficients of projector.

error from Krylov space + error from thresholding + error from noise

[ |ψ0⟩, T1(H ) |ψ0⟩, T2(H ) |ψ0⟩, . . . , TD−1(H ) |ψ0⟩] polyD−1(H ) |ψ0⟩

E0



Error analysis 
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“In practice” results:1 to reach energy error , require…

Krylov space dimension ,

Measurements per dimension 

where initial state overlap with low-energy subspace, spectral gap.

ℰ

D = Θ (log
1

|γ0 |
+ log

1
ℰ ) min ( 1

ℰ
,

1
Δ )

M = Θ ( 1
ℰ2

+
1

ℰ |γ0 |4 )
γ0 = Δ =

1 “In practice” because theoretical bound only guarantees first term in  is  for ;  is based on 
numerics.
2 Above is for block-encoding; real-time Krylov space analysis is similar.

M ℰ−p p ∈ [2,3] p = 2



Comparing theory to numerics
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Error from Krylov spaceError from noise

 free, best choice is 

ℰ ≤ O ( 1

M
+

δ

|γ0 |2 M
+ δ +

1
|γ0 |2 (1 +

δ
2 )

−D

)

δ δ = Θ( max(target error, Δ))



Thank you!
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Questions?

Will Kirby, Mario Motta, and Antonio Mezzacapo, Quantum 7, 1018 (2023),

https://quantum-journal.org/papers/q-2023-05-23-1018/.


