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ABSTRACT
Contextuality is an indicator of non-classicality in quan-
tum systems. We use contextuality to evaluate the vari-
ational quantum eigensolver (VQE), a promising tool for
near-term quantum simulation. We present an efficiently
computable test to determine whether or not the Hamil-
tonian in a VQE procedure is contextual. Using the re-
sulting structure for noncontextual Hamiltonians, we give
a quasi-quantized model for variational quantum eigen-
solvers whose Hamiltonians are noncontextual, and use
the model to show that the noncontextual Hamiltonian
problem is NP-complete. These results support the notion
of noncontextuality as classicality in quantum systems.

THE NONCONTEXTUAL HAMILTONIAN PROBLEM IS NP-COMPLETE
Using (6), we can any expectation value of the noncontextual Hamiltonian given the set of classical parameters (~q, ~r).
Thus (~q, ~r) can serve as a classical witness for any eigenvalue of the Hamiltonian. In particular, if the ground state energy
of the Hamiltonian is below some value a, there exists (~q, ~r) such that 〈H〉(~q,~r) < a. This proves that the noncontextual
Hamiltonian problem is in NP, up to some details, which are given in our forthcoming work. Since diagonal Hamiltonians
are both NP-complete and noncontextual, the noncontextual Hamiltonian problem is NP-complete.

VQE
The goal of a variational quantum eigensolver is to ap-
proximate the ground state energy of some Hamiltonian,
represented as a linear combination of Pauli operators:

H =
∑
P∈S

hPP, (1)

where S is the set of Pauli terms P , and hP are real
coefficients. We find the expected energy by preparing
an ansatz quantum state, and evaluating the expectation
value of each Pauli term in S separately on our quantum
device. We then treat their weighted sum (1) as the objec-
tive function for a classical optimization that updates the
parameters of the ansatz.

CONTEXTUALITY
A Pauli Hamiltonian is contextual if there are no consistent
assignments of simultaneous values (±1) to its terms [1].
The classic example of an obstacle to such assignments is
the Peres-Mermin (PM) square [2]:

XI IX XX +1
IZ ZI ZZ +1
XZ ZX Y Y +1
+1 +1 −1

The product of any row or column (including the ±1 at its
end) is 1, so since the operators in any row or column can
be measured simultaneously, any assignment of values to
the operators must satisfy these products. However, no
such assignment exists: the PM square is contextual.

CRITERION FOR CONTEXTUALITY
If A,B are commuting Pauli operators, then they can be measured simultaneously, so from the values assigned to them
we can infer the value assigned to AB. In each diagram below, the upper graph shows commutation relations amongst
a set of four Pauli operators A,B,C,D (edges indicate commutation). Each lower graph shows a tree of inferences
following from value assignments to A,B,C,D: each parent node is the product of its children, which commute.

Thus the implication of each lower graph is that the value assigned to its root is the product of the values assigned to
the leaves, but since each leaf appears twice and each assigned value is±1, the value assigned to the root is +1. Since the
root of each tree is −1, this is a contradiction, so each of these commutativity graphs is contextual.
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Hence, a set of Pauli operators is contextual if it contains a subset with one of the commutation graphs above. In [1], we
show that the reverse implication also holds, i.e., the absence of these commutation graphs indicates noncontextuality.

STRUCTURE OF A NONCONTEXTUAL HAMILTONIAN
From the above test, it follows that a Hamiltonian is noncontextual iff its Pauli terms S have the following structure:

S = Z ∪ C1 ∪ C2 ∪ · · · ∪ CN , (2)

where Z is the set of operators in S that commute with all others in S, operators in the same Ci commute, and operators
in different Ci anticommute [1]. Thus we can see that S is noncontextual iff, after identifying the fully-commuting subset
Z (which takes O(|S|2) classical operations), commutation is transitive on the remainder of S (which we can check in
O(|S|3) classical operations by testing all triples in S).

Let Ci ≡ {Cij |j = 1, 2, ..., |Ci|} for each i; then for each j, Ci1Cij commutes with all operators in S. Thus, let G be
a generating set for the commuting set Z ∪ {Ci1Cij |i, j}, and let G be the Abelian group generated by G. Then the
Hamiltonian may be written:

H =
∑
P∈S

hPP =
∑
P∈Z

hPP +

N∑
i=1

|Ci|∑
j=1

hijCij =
∑
P∈Z

hPP +

N∑
i=1

|Ci|∑
j=1

hij Ci1Ci1︸ ︷︷ ︸
insert identity

Cij

⇒ H =
∑
B∈G

(
hB +

N∑
i=1

hB,iCi1

)
B, (3)

where each step simply involves reorganizing the expression and/or relabeling the coefficients.

QUASI-QUANTIZED MODEL
A quasi-quantized model is a classical statistical model with
a classical uncertainty relation. It comprises a set of “ac-
tual" states of the system, called ontic states, and a set of al-
lowed probability distributions, called epistemic states [3].

In our case, the ontic states are the joint assignments of
values (±1) to G (the generating set for the commuting
components of the Hamiltonian) and {Ci1|i = 1, 2, ..., N}.
Each such assignment induces an assignment to each op-
erator in S, as shown in the following diagrams (parent
nodes are products of their children, which commute):
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The epistemic states over these ontic states may be ex-
pressed as sets of expectation values for G ∪ {Ci1|i =
1, 2, ..., N}: the set of allowed epistemic states is{

(~q, ~r) ∈ {±1}|G| × RN | |~r| = 1
}
, (4)

where

〈Gj〉 = qj for each Gj ∈ G, and 〈Ci1〉 = ri ∀i. (5)

Via (3), each epistemic state gives an expectation value
for the Hamiltonian:

〈H〉(~q,~r) =
∑
B∈G

(
hB +

N∑
i=1

hB,iri

) ∏
j∈JB

qj , (6)

forJB such that B =
∏

j∈JB
Gj . In our forthcoming work,

we show that the expectation values thus generated al-
ways correspond to valid quantum states, and that they
include all eigenstates of the Hamiltonian.

We may treat (6) as a classical objective function of an
epistemic state (~q, ~r), and implement any classical opti-
mization procedure we like to find its minimum. As
shown below, this implies that the associated local Hamil-
tonian problem is NP-complete, so it is not guaranteed to
be classically tractable: however, it is unambiguously a
classical problem.
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