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HAMILTONIAN NONCONTEXTUALITY
A common goal for quantum simulation algorithms is to ap-
proximate the ground state energy of some Hamiltonian:

H =
∑
P∈S

hPP, (1)

where S is the set of Pauli terms P , and hP are real coefficients.
Such a Hamiltonian is noncontextual if there exist consistent
assignments of simultaneous values (±1) to its terms [1].

CRITERION FOR NONCONTEXTUALITY
An obstacle to the simultaneous assignment of values to the
terms S can arise as follows:

If A,B are commuting Pauli operators, then they can be
measured simultaneously, so from the values assigned to
them we can infer the value assigned to AB. In each dia-
gram below, the upper graph shows commutation relations
amongst a set of four Pauli operators A,B,C,D. Each lower
graph shows a tree of inferences following from value assign-
ments to A,B,C,D: each parent node is the product of its
children, which commute.

Thus each lower graph implies that the root’s value is the
product of the leaves’ values (±1); each leaf appears twice, so
the value assigned to the root is +1. But each root it −1, so
this is a contradiction⇒ each of these commutation graphs is
contextual.
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Hence, S is contextual if it contains a subset with one of
these commutation graphs. We also proved the reverse: ab-
sence of these subgraphs indicates noncontextuality [1].

STRUCTURE OF A NONCONTEXTUAL HAMILTONIAN
From the criterion, it follows that a Hamiltonian is noncontextual iff its Pauli terms S have the following structure:

S = Z ∪ C1 ∪ C2 ∪ · · · ∪ CN , (2)

where Z is the set of operators in S that commute with all others in S, operators in the same Ci commute, and operators in
different Ci anticommute [1]. In other words, S is noncontextual iff commutation is transitive on S \ Z .

Let Ci ≡ {Cij |j = 1, 2, ..., |Ci|} for each i; then for each j, Ci1Cij commutes with all operators in S . Thus, let G be a generating
set for the commuting set Z ∪ {Ci1Cij |i, j}, and let G be the Abelian group generated by G. Then the Hamiltonian may be
written:

H =
∑
P∈S

hPP =
∑
P∈Z

hPP +

N∑
i=1

|Ci|∑
j=1

hijCij =
∑
P∈Z

hPP +

N∑
i=1

|Ci|∑
j=1

hij Ci1Ci1︸ ︷︷ ︸
insert identity

Cij

⇒ H =
∑
B∈G

(
hB +

N∑
i=1

hB,iCi1

)
B, (3)

where each step simply involves reorganizing the expression and/or relabeling the coefficients.

QUASI-QUANTIZED MODEL
A quasi-quantized model is a classical statistical model with an uncertainty relation, comprising a set of "actual" states of the system
(ontic states), and a set of allowed probability distributions (epistemic states) [3].

In our case, the ontic states are joint assignments of values (±1) to G (generating set for Z) and {Ci1|i = 1, 2, ..., N}. Each such
assignment induces an assignment to each operator in S, as shown in the following diagrams (parent nodes are products of their
children, which commute):

B B Ci1Cij

Cij
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The epistemic states over these ontic states may be expressed as sets of expectation values for G ∪ {Ci1|i = 1, 2, ..., N}: the set
of allowed epistemic states is{

(~q, ~r) ∈ {±1}|G| × RN | |~r| = 1
}
, where 〈Gj〉 = qj for each Gj ∈ G, and 〈Ci1〉 = ri ∀i. (4)

Via (3), each epistemic state gives an expectation value for the Hamiltonian:

〈H〉(~q,~r) =
∑
B∈G

(
hB +

N∑
i=1

hB,iri

) ∏
j∈JB

qj , (5)

for JB such that B =
∏

j∈JB
Gj . In [4], we show that the expectation values thus generated always correspond to valid

quantum states, and that they include all eigenstates of the Hamiltonian.
We may treat (5) as a classical objective function of an epistemic state (~q, ~r), and implement any classical optimization proce-

dure we like to find its minimum. As shown below, this implies that the associated local Hamiltonian problem is NP-complete,
so it is not guaranteed to be classically tractable: however, it is unambiguously a classical problem.

THE NONCONTEXTUAL HAMILTONIAN PROBLEM IS NP-COMPLETE
Using (5), we can obtain any expectation value of the noncontextual Hamiltonian for some set of classical parameters (~q, ~r).
Thus for any eigenvalue of the Hamiltonian there exists a classical witness (~q, ~r). In particular, if the ground state energy of the
Hamiltonian is below some value a, there exists (~q, ~r) such that 〈H〉(~q,~r) < a. This proves that the noncontextual Hamiltonian
problem is in NP, up to some details given in [4]. Since diagonal Hamiltonians are both NP-complete and noncontextual, the
noncontextual Hamiltonian problem is NP-complete.

NONCONTEXTUAL APPROXIMATION
We can also study how noncontextual Hamiltonians can
be used to approximate general Hamiltonians. We could
then use the classical simulation algorithm for noncontextual
Hamiltonians to approximate the ground state energies.
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For example, the plots above compare the errors of the
Hartree-Fock (HF) method and the noncontextual approxima-
tion for Hydrogen chains of three to six atoms, as a function
of internuclear separations. As the separations increase, HF
steadily loses accuracy, due to the increasing multireference
character of the system. However, using the noncontextual
approximation, there is no implicit assumption of a single
reference state, so it regains accuracy in the large separa-
tion regime. As many post-Hartree Fock methods in chem-
istry involve constraining the state space based on excitation
away from the reference state, the noncontextual approxima-
tion represents a fundamentally different approach to approx-
imating the full Hamiltonian.
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