Contextual Subspace Variational Quantum Eigensolver

Will Kirby¹, Andrew Tranter^{1,2}, and Peter Love^{1,3} ¹Department of Physics and Astronomy, Tufts University, Medford, MA 02155 ²Cambridge Quantum Computing, Cambridge, CB2 1UB United Kingdom ³Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973

APS March Meeting 2021

March 18, 2021

Contextuality of VQE [KL19]

2 Noncontextual Hamiltonians [KL20]

3 CS-VQE: a new hybrid quantum-classical algorithm [KTL20]

Variational quantum eigensolver (VQE)

Goal: find ground state energy of

$$H=\sum_{P\in\mathcal{S}}h_PP,$$

for Pauli operators P in some set S.

Method:

Main process: on classical computer, minimize

$$E(\vec{\theta}) = \langle \psi(\vec{\theta}) | H | \psi(\vec{\theta}) \rangle = \sum_{P \in S} h_P \langle \psi(\vec{\theta}) | P | \psi(\vec{\theta}) \rangle$$

for ansatz $|\psi(\vec{\theta})\rangle$.

2 Iteration step: on quantum computer, estimate $\langle P \rangle$ for each $P \in S$.

Will Kirby

Noncontextual model = type of classical HVM.

Given \mathcal{S} , noncontextual model consists of:

- **(**) joint value assignments to S (the "classical, real" values).
- Ø probability distributions over the joint value assignments:
 - need to impose uncertainty relation, i.e., restriction on which values can be known simultaneously ⇔ quasi-quantization [Spe16].
- \mathcal{S} is *noncontextual* iff possible to construct such a model.

(Set of all Pauli operators is *contextual*, i.e., no noncontextual model for it exists \Rightarrow separation between classical and quantum.)

Result [KL19]. S is *noncontextual* iff it has the form

$$\mathcal{S} = \mathcal{C} \cup \mathcal{T},$$

where commutation is an equivalence relation on \mathcal{T} , and any $A \in \mathcal{C}$ commutes with any $B \in \mathcal{S}$.

Special cases of noncontextual sets:

- any commuting set.
- 2 any anticommuting set.
- any set in which commutation is an equivalence relation (includes cases 1 and 2): for example, {(XI, XZ), (YI, YZ), (ZI, ZZ)}.

Result [KL19]. S is *noncontextual* iff it has the form

$$\mathcal{S}=\mathcal{C}\cup\mathcal{T},$$

where commutation is an equivalence relation on \mathcal{T} , and any $A \in \mathcal{C}$ commutes with any $B \in \mathcal{S}$.

Corollary. Hamiltonian H (VQE instance) is noncontextual iff its set S of Pauli terms is noncontextual.

Result [KL20]. Noncontextual \Rightarrow can build classical model!

- **1** phase space points = joint value assignments to S.
- states = probability distributions over phase space.

For *n*-qubit noncontextual Hamiltonian, probability distributions parametrized by $\vec{a} =$ at most 2n + 1 real parameters.

Can efficiently express expected energy as function of these:

$$\langle H \rangle = E(\vec{a}).$$

 \Rightarrow "dequantization" of noncontextual VQE.

Contextual subspace VQE [KTL20].

Given arbitrary H, can partition:

$$H=H_{\rm n.c.}+H_{\rm c.},$$

for $H_{n.c.}$ noncontextual, as large as possible.

Ground state \vec{a}_0 of $H_{n.c.}$ corresponds to common eigenspace of \mathcal{A} , some commuting set of operators that we can derive from $H_{n.c.}$.

On quantum computer, can minimize expectation value of $H_{c.}$ within this subspace to obtain correction to noncontextual ground state energy.

Hybrid algorithm for arbitrary Hamiltonians

Contextual subspace VQE [KTL20].

 $H = H_{\rm n.c.} + H_{\rm c.}$

 $\langle H_{\rm n.c.} \rangle$ is determined classically, $\langle H_{\rm c.} \rangle$ is determined quantumly.

Each operator in A removes one qubit's worth of freedom, so $H_{c.}$ becomes a Hamiltonian on n - |A| qubits.

Can we use more quantum resources to improve accuracy?

Idea: stop fixing eigenvalues of some of operators in A to increase "resolution" of $H_{c.} \Rightarrow$ set # of qubits for $H_{c.}$ to any desired value.

Applying Contextual Subspace VQE to molecules

Figure: CS-VQE approximation errors versus number of qubits used on the quantum computer, for tapered Hamiltonians. Black line is chemical accuracy.

Thank you! Any questions?

- William M. Kirby and Peter J. Love. Contextuality test of the nonclassicality of variational quantum eigensolvers. *Phys. Rev. Lett.*, 123:200501, Nov 2019.
- William M. Kirby and Peter J. Love. Classical simulation of noncontextual pauli hamiltonians. *Phys. Rev. A*, 102:032418, Sep 2020.
- William M. Kirby, Andrew Tranter, and Peter J. Love. Contextual subspace variational quantum eigensolver. *arXiv:2011.10027*, 2020.
- Robert W. Spekkens. Quasi-Quantization: Classical Statistical Theories with an Epistemic Restriction, pages 83–135. Springer Netherlands, Dordrecht, 2016.

Code: https://github.com/wmkirby1/ContextualSubspaceVQE

Funding: NSF Grants No. DGE-1842474, PHY-1720395, PHY-1818914, and Google Inc.