Exact and efficient Lanczos* method on a quantum computer

Will Kirby^{1,2}, Mario Motta³, and Antonio Mezzacapo² ¹Department of Physics and Astronomy, Tufts University, Medford, MA ²IBM Quantum, T. J. Watson Research Center, Yorktown Heights, NY ³IBM Quantum, IBM Research Almaden, San Jose, CA 95120, USA

SIAM-CSE23 Minisymposium on "Quantum Algorithms for Scientific Computing"

March 2, 2023

Goal: estimate ground state energy of quantum Hamiltonian.

Abstract perspective: approximate lowest eigenvalue of Hermitian matrix.

Example applications:

- Quantum chemistry.
- Condensed matter physics.
- High-energy physics.
- Nuclear physics.

Goal is classically challenging due to exponential Hilbert space dimension.

Lanczos method = classical method for approximating lowest eigenvalues:

- $Initial guess |\psi_0\rangle \quad \Rightarrow \quad H|\psi_0\rangle \quad \Rightarrow \quad H^2|\psi_0\rangle \quad \cdots \Rightarrow \quad H^{D-1}|\psi_0\rangle.$
- $(\mathbf{H}, \mathbf{S}) = \text{project } H \text{ onto span}\{|\psi_0\rangle, \ H|\psi_0\rangle, \ H^2|\psi_0\rangle, \ ..., \ H^{D-1}|\psi_0\rangle\}.$
- **③** lowest eigenvalue of $(\mathbf{H}, \mathbf{S}) \sim$ lowest eigenvalue of H.

Advantage: converges exponentially with D (in ∞ precision arithmetic).

Disadvantage: classically, requires storing entire statevectors $H^i |\psi_0\rangle \Rightarrow$ exponential overhead.

Can we construct a quantum version that mitigates the overhead to represent statevectors while keeping fast convergence?¹

¹Klymko *et al.* (2022), Epperly *et al.* (2022), and many more.

Block encoding

Idea: for *H* on *n* qubits (s.t. $||H|| \le 1$), find *U* on m + n qubits s.t.²

Quantum Lanczos method

$$(RU)^{j} = \begin{pmatrix} T_{j}(H) & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \end{pmatrix}$$
can use block encoding to exactly construct $T_{j}(H)|\psi_{0}\rangle$.

Recall: Lanczos method \sim project *H* onto

$$\begin{aligned} & \operatorname{span}\{|\psi_0\rangle, \ H|\psi_0\rangle, \ H^2|\psi_0\rangle, \ ..., \ H^{D-1}|\psi_0\rangle\} \\ & = \operatorname{span}\{|\psi_0\rangle, \ T_1(H)|\psi_0\rangle, \ T_2(H)|\psi_0\rangle, \ ..., \ T_{D-1}(H)|\psi_0\rangle\}. \end{aligned}$$

To diagonalize H projected onto subspace, estimate

 $\mathbf{H}_{ij} := \langle \psi_0 | T_i(H) H T_j(H) | \psi_0 \rangle, \quad \mathbf{S}_{ij} := \langle \psi_0 | T_i(H) T_j(H) | \psi_0 \rangle$

on quantum computer for i, j = 0, 1, 2, ..., D - 1, then solve

 $\mathbf{H}\vec{\mathbf{v}} = \lambda \mathbf{S}\vec{\mathbf{v}}.$

So the quantities we need are

$$\langle \psi_{0} | T_{i}(H) H T_{j}(H) | \psi_{0} \rangle = \frac{1}{4} \Big(\left\langle T_{i+j+1}(H) \right\rangle_{0} + \left\langle T_{|i+j-1|}(H) \right\rangle_{0} \\ + \left\langle T_{|i-j+1|}(H) \right\rangle_{0} + \left\langle T_{|i-j-1|}(H) \right\rangle_{0} \Big),$$

$$\langle \psi_{0} | T_{i}(H) T_{j}(H) | \psi_{0} \rangle = \frac{1}{2} \Big(\left\langle T_{i+j}(H) \right\rangle_{0} + \left\langle T_{|i-j|}(H) \right\rangle_{0} \Big)$$

for i, j = 0, 1, 2, ..., D - 1. In other words, need to estimate

$$\langle T_k(H) \rangle_0 \coloneqq \langle \psi_0 | T_k(H) | \psi_0 \rangle$$

for each k = 0, 1, 2, ..., 2D - 1.

Required circuits

Hence, required circuits are: for each k = 0, 1, 2, ..., 2D - 1, k/2 times $|0\rangle_a$ G^{1} Geven k: U $|\psi_0\rangle$ Prep block-encoding Rotate to local Pauli state |k/2| times basis $|0\rangle_a$ Rodd k: U C_{P_i} $|\psi_0|$

where $G|0\rangle_a$ identifies the block in the block encoding.

Will Kirby

Can bound energy error ${\cal E}$ as function of noise rate, Krylov space dimension, problem parameters.

Assuming noise only from finite shots, to reach energy error ${\mathcal E}$ we require

$$D = \Theta\left[\left(\log\frac{1}{|\gamma_0|} + \log\frac{1}{\mathcal{E}}\right)\min\left(\frac{1}{\mathcal{E}}, \frac{1}{\Delta}\right)\right]$$

and

$$M = \Theta \left[D \left(rac{1}{\mathcal{E}^2} + rac{1}{\mathcal{E} |\gamma_0|^4}
ight)
ight].$$

measurements in total, for initial state overlap γ_0 and spectral gap Δ .³

³Uses analysis based on Epperly *et al.*, 2022.

⁴ "In practice" because theoretical bound only guarantees first term in M is \mathcal{E}^{-p} for $p \in [2, 3]$; p = 2 is based on numerics.

Numerical examples

Left plot shows energy error versus Krylov space dimension for BeH₂ in STO-3G, equilibrium configuration (bondlength 1.3264 Å), with different noise rates per matrix element. Right plot shows energy error per site versus Krylov space dimension for J1-J2 model on 4×4 square lattice with couplings $J_1 = 1$ and $J_2 = 0.5$.

Thank you!

Preprint: https://arxiv.org/abs/2208.00567