Exact and efficient Lanczos* method on a quantum computer

Will Kirby ${ }^{1,2}$, Mario Motta ${ }^{3}$, and Antonio Mezzacapo ${ }^{2}$
${ }^{1}$ Department of Physics and Astronomy, Tufts University, Medford, MA ${ }^{2}$ IBM Quantum, T. J. Watson Research Center, Yorktown Heights, NY ${ }^{3}$ IBM Quantum, IBM Research Almaden, San Jose, CA 95120, USA

SIAM-CSE23 Minisymposium on "Quantum Algorithms for Scientific Computing"

March 2, 2023

Motivation

Goal: estimate ground state energy of quantum Hamiltonian.

Abstract perspective: approximate lowest eigenvalue of Hermitian matrix.

Example applications:

- Quantum chemistry.
- Condensed matter physics.
- High-energy physics.
- Nuclear physics.

Goal is classically challenging due to exponential Hilbert space dimension.

Lanczos* method

Lanczos method $=$ classical method for approximating lowest eigenvalues:
(1) Initial guess $\left|\psi_{0}\right\rangle \Rightarrow H\left|\psi_{0}\right\rangle \Rightarrow H^{2}\left|\psi_{0}\right\rangle \quad \cdots \Rightarrow \quad H^{D-1}\left|\psi_{0}\right\rangle$.
(2) $(\mathbf{H}, \mathbf{S})=$ project H onto $\operatorname{span}\left\{\left|\psi_{0}\right\rangle, H\left|\psi_{0}\right\rangle, H^{2}\left|\psi_{0}\right\rangle, \ldots, H^{D-1}\left|\psi_{0}\right\rangle\right\}$.
(3) lowest eigenvalue of $(\mathbf{H}, \mathbf{S}) \sim$ lowest eigenvalue of H.

Advantage: converges exponentially with D (in ∞ precision arithmetic).
Disadvantage: classically, requires storing entire statevectors $H^{i}\left|\psi_{0}\right\rangle$ \Rightarrow exponential overhead.

Can we construct a quantum version that mitigates the overhead to represent statevectors while keeping fast convergence? ${ }^{1}$
${ }^{1}$ Klymko et al. (2022), Epperly et al. (2022), and many more.

Block encoding

Idea: for H on n qubits (s.t. $\|H\| \leq 1$), find U on $m+n$ qubits s.t. ${ }^{2}$

Quantum Lanczos method

can use block encoding to exactly construct $T_{j}(H)\left|\psi_{0}\right\rangle$.
Recall: Lanczos method \sim project H onto

$$
\begin{aligned}
& \operatorname{span}\left\{\left|\psi_{0}\right\rangle, H\left|\psi_{0}\right\rangle, H^{2}\left|\psi_{0}\right\rangle, \ldots, H^{D-1}\left|\psi_{0}\right\rangle\right\} \\
& =\operatorname{span}\left\{\left|\psi_{0}\right\rangle, T_{1}(H)\left|\psi_{0}\right\rangle, T_{2}(H)\left|\psi_{0}\right\rangle, \ldots, T_{D-1}(H)\left|\psi_{0}\right\rangle\right\}
\end{aligned}
$$

Quantum Lanczos method

To diagonalize H projected onto subspace, estimate

$$
\mathbf{H}_{i j}:=\left\langle\psi_{0}\right| T_{i}(H) H T_{j}(H)\left|\psi_{0}\right\rangle, \quad \mathbf{S}_{i j}:=\left\langle\psi_{0}\right| T_{i}(H) T_{j}(H)\left|\psi_{0}\right\rangle
$$

on quantum computer for $i, j=0,1,2, \ldots, D-1$, then solve

$$
\mathbf{H} \vec{v}=\lambda \mathbf{S} \vec{v}
$$

Required quantities

So the quantities we need are

$$
\begin{aligned}
&\left\langle\psi_{0}\right| T_{i}(H) H T_{j}(H)\left|\psi_{0}\right\rangle=\frac{1}{4}(\left\langle T_{i+j+1}(H)\right\rangle_{0}+\left\langle T_{|i+j-1|}(H)\right\rangle_{0} \\
&\left.+\left\langle T_{|i-j+1|}(H)\right\rangle_{0}+\left\langle T_{|i-j-1|}(H)\right\rangle_{0}\right) \\
&\left\langle\psi_{0}\right| T_{i}(H) T_{j}(H)\left|\psi_{0}\right\rangle=\frac{1}{2}\left(\left\langle T_{i+j}(H)\right\rangle_{0}+\left\langle T_{|i-j|}(H)\right\rangle_{0}\right)
\end{aligned}
$$

for $i, j=0,1,2, \ldots, D-1$. In other words, need to estimate

$$
\left\langle T_{k}(H)\right\rangle_{0}:=\left\langle\psi_{0}\right| T_{k}(H)\left|\psi_{0}\right\rangle
$$

for each $k=0,1,2, \ldots, 2 D-1$.

Required circuits

Hence, required circuits are: for each $k=0,1,2, \ldots, 2 D-1$,

Prep block-encoding

where $G|0\rangle_{a}$ identifies the block in the block encoding.

"In practice" error analysis ${ }^{4}$

Can bound energy error \mathcal{E} as function of noise rate, Krylov space dimension, problem parameters.

Assuming noise only from finite shots, to reach energy error \mathcal{E} we require

$$
D=\Theta\left[\left(\log \frac{1}{\left|\gamma_{0}\right|}+\log \frac{1}{\mathcal{E}}\right) \min \left(\frac{1}{\mathcal{E}}, \frac{1}{\Delta}\right)\right]
$$

and

$$
M=\Theta\left[D\left(\frac{1}{\mathcal{E}^{2}}+\frac{1}{\mathcal{E}\left|\gamma_{0}\right|^{4}}\right)\right]
$$

measurements in total, for initial state overlap γ_{0} and spectral gap $\Delta .^{3}$

[^0]
Numerical examples

Left plot shows energy error versus Krylov space dimension for BeH_{2} in STO-3G, equilibrium configuration (bondlength $1.3264 \AA$), with different noise rates per matrix element. Right plot shows energy error per site versus Krylov space dimension for J1-J2 model on 4×4 square lattice with couplings $J_{1}=1$ and $J_{2}=0.5$.

Thank you!
Preprint: https://arxiv.org/abs/2208.00567

[^0]: ${ }^{3}$ Uses analysis based on Epperly et al., 2022.
 ${ }^{4}$ "In practice" because theoretical bound only guarantees first term in M is \mathcal{E}^{-p} for $p \in[2,3] ; p=2$ is based on numerics.

