Exploiting Contextuality in Variational Quantum Algorithms

Will Kirby¹, Andrew Tranter^{1,2}, and Peter Love^{1,3} ¹Department of Physics and Astronomy, Tufts University, Medford, MA 02155 ²Cambridge Quantum Computing, Cambridge, CB2 1UB United Kingdom ³Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973

December 1, 2020

- 2 Contextuality of VQE [KL19]
- 3 Quasi-quantized (phase-space) model for noncontextual VQE [KL20]
- Approximation method for contextual VQE [KTL20]

Goal: find ground state energy of H.

Method:

preprocess

$$H=\sum_{P\in\mathcal{S}}h_PP,$$

for Pauli operators P in some set S, and real coefficients h_P .

- **2** given ansatz $|\psi(\vec{\theta})\rangle$, estimate expectation values of each $P \in S$ separately.
- **③** given results, classically evaluate $\langle H \rangle$, and update ansatz parameters $\vec{\theta}$ to minimize.

Want to understand where "quantumness" appears in this algorithm.

$$H = \sum_{P \in \mathcal{S}} h_P P$$

 \Rightarrow Focus on the set of measurements S.

For example, *n* qubit Pauli operator:

$$P = \underbrace{Z \otimes I \otimes X \otimes I \otimes \cdots \otimes Y \otimes Z}_{n \text{ Pauli matrices}} \equiv ZIXI \cdots YZ.$$

Facts:

- Hermitian, eigenvalues = $\pm 1 \Rightarrow$ self-inverse.
- 2 Basis for Hermitian operators on *n* qubits.
- **③** Paulis P, Q either commute or anticommute.
- **④** P, Q commute $\Leftrightarrow PQ = \pm R$ for Pauli R.

Given S, suppose you want to construct a classical, realistic model (think HVM). This consists of:

- **(**) joint value assignments to S: "ontic states."
- Probability distributions over the joint value assignments: "epistemic states."
- need to impose uncertainty relation, i.e., restriction on which measurements can be performed simultaneously.

For example, suppose $S = \{X, Y, Z\}$.

- **1** joint value assignment = $v = \{\pm 1, \pm 1, \pm 1\}$.
- **2** probability distribution: $p(v) = \prod_{i=1}^{3} \frac{1}{2}(1 + v_i r_i)$ for $|\vec{r}| \le 1$.

Contextuality: when is it possible versus impossible to construct such a model?

Given S, suppose you want to construct a classical, realistic model (think HVM). This consists of:

- **(**) joint value assignments to S: "ontic states."
- Probability distributions over the joint value assignments: "epistemic states."
- need to impose uncertainty relation, i.e., restriction on which measurements can be performed simultaneously.

For example, suppose $S = \{X, Y, Z\}$.

- joint value assignment = $v = \{\pm 1, \pm 1, \pm 1\}$.
- **2** probability distribution: $p(v) = \prod_{i=1}^{3} \frac{1}{2}(1 + v_i r_i)$ for $|\vec{r}| \le 1$.

Strong contextuality: when is it possible versus impossible to construct the joint value assignments?

Focus on joint value assignments (strong contextuality).

Any commuting subset of S is simultaneously measurable.

So if $P, Q \in S$ and [P, Q] = 0, and joint value assignment is classical, "real" values for S, then by measuring P and Q we infer value assigned to PQ.

For example, $S = \{XI, IX\} \Rightarrow$ for assignment $\{\pm 1, \pm 1\}$ to S, can infer assignment to XX.

Example: $S = \{XI, IX, ZI, IZ\}.$

Example: $S = \{XI, IX, ZI, IZ\}.$

Contextuality of Pauli operators

Generalize: tree depends only on commutation relations. E.g.,

Contextuality of Pauli operators

Contextuality of Pauli operators

 ${\mathcal S}$ is noncontextual iff it contains none of these commutation subgraphs.

 $\Leftrightarrow \quad \mathcal{S} \text{ is noncontextual iff it has the form}$

$$\mathcal{S} = \mathcal{Z} \cup \mathcal{C}_1 \cup \mathcal{C}_2 \cup \cdots \cup \mathcal{C}_N,$$

where $A \in \mathcal{Z}$ commutes with any $P \in \mathcal{S}$, and $B_i \in C_i$ commutes with $B_j \in C_j$ iff i = j.

Up to this point: [KL19].

Hamiltonian H is noncontextual iff its set of Pauli terms has the form

$$\mathcal{S}=\mathcal{Z}\cup \mathcal{C}_1\cup \mathcal{C}_2\cup\cdots\cup \mathcal{C}_N.$$

Therefore, $A, B \in C_i \Rightarrow AB$ commutes with everything \Rightarrow can add AB to $\mathcal{Z} \Rightarrow$ can remove B from C_i and recover by inference on $A, AB: A \cdot AB = B$.

Therefore, can recover Hamiltonian terms by inference on

$$\mathcal{S}' = \mathcal{Z}' \cup \{\mathcal{C}_{11}\} \cup \{\mathcal{C}_{21}\} \cup \cdots \cup \{\mathcal{C}_{N1}\},$$

where $\mathcal{Z} \subset \mathcal{Z}'$, \mathcal{Z}' still commutes with everything, and $C_{i1} \in C_i$.

Noncontextual Hamiltonians

Can recover Hamiltonian terms by inference on

$$\mathcal{S}' = \mathcal{Z}' \cup \{\mathcal{C}_{11}\} \cup \{\mathcal{C}_{21}\} \cup \cdots \cup \{\mathcal{C}_{N1}\}.$$

Let G be a set of generators for the Abelian group $\overline{Z'}$. Can recover Hamiltonian terms by inference on

$$G \cup \{C_{11}\} \cup \{C_{21}\} \cup \cdots \cup \{C_{N1}\},\$$

which is independent, i.e., all outcome assignments are allowed.

Every noncontextual Hamiltonian has the form:

$$H = \sum_{B \in \overline{G}} \left(h_B B + \sum_{i=1}^N h_{B,i} B C_{i1} \right)$$

Every noncontextual Hamiltonian has the form:

$$H = \sum_{B \in \overline{G}} \left(h_B B + \sum_{i=1}^N h_{B,i} B C_{i1} \right)$$

What are the allowed probability distributions (epistemic states)? Turn out to lead to the following sets of expectation values:

$$\langle G_j \rangle = q_j = \pm 1, \quad \langle C_{i1} \rangle = r_i$$

for $|\vec{r}| = 1$. Can prove that these are enough to generate all possible expectation values of the Hamiltonian.

Quasi-quantized model (Robert Spekkens [Spe16]): equivalent to a classical phase-space model with an uncertainty relation.

Noncontextual Hamiltonians

Every noncontextual Hamiltonian has the form:

$$H = \sum_{B \in \overline{G}} \left(h_B + \sum_{i=1}^N h_{B,i} C_{i1} \right) B.$$

$$\langle G_j \rangle = q_j = \pm 1, \quad \langle C_{i1} \rangle = r_i$$

for $|\vec{r}| = 1$.

$$\Rightarrow \qquad \langle H \rangle_{(\vec{q},\vec{r})} = \sum_{B \in \overline{G}} \left(h_B + \sum_{i=1}^N h_{B,i} r_i \right) \prod_{j \in \mathcal{J}_B} q_j,$$

for \mathcal{J}_B s.t. $B = \prod_{j \in \mathcal{J}_B} G_j$.

Classical objective function of O(n) real parameters!

Will Kirby

Noncontextual Hamiltonians

$$\langle H \rangle_{(\vec{q},\vec{r})} = \sum_{B \in \overline{G}} \left(h_B + \sum_{i=1}^N h_{B,i} r_i \right) \prod_{j \in \mathcal{J}_B} q_j,$$

for \mathcal{J}_B s.t. $B = \prod_{j \in \mathcal{J}_B} G_j$.

Classical objective function of O(n) real parameters $(\vec{q}, \vec{r})!$

Immediate consequences:

- I dequantization of noncontextual VQE.
- **2** noncontextual Hamiltonian problem is in NP (hence NP-complete).

Up to this point: [KL20].

Given any arbitrary H, can partition:

$$H=H_{\rm n.c.}+H_{\rm c.},$$

where $H_{n.c.}$ is noncontextual and as large as possible.

Ground state $(\vec{q}, \vec{r})_0$ of $H_{n.c.}$ corresponds to subspace of quantum states: the common eigenspace of the G_j (eigenvalues q_j) and the single operator

$$\mathcal{A} \equiv \sum_{i=1}^{N} r_i C_{i1}$$
 (eigenvalue +1).

If this eigenspace is > 1 dimensional, can minimize expectation value of $H_{\rm c.}$ within this subspace on quantum computer to obtain correction to noncontextual ground state energy.

$$H=H_{\rm n.c.}+H_{\rm c.}$$

Noncontextual ground state \leftrightarrow subspace stabilized by $q_j G_j$ for j = 1, 2, ..., m and $\mathcal{A} \equiv \sum_{i=1}^{N} r_i C_{i1}$ (rotated Pauli).

 $\langle {\it H}_{\rm n.c.} \rangle$ is determined classically, $\langle {\it H}_{\rm c.} \rangle$ is determined quantumly.

Each "stabilizer" G_j and A removes one qubit's worth of freedom from the quantum search space, so $H_{c.}$ becomes a Hamiltonian on n - m - 1 qubits.

Can we use more quantum resources to improve accuracy?

Can we use more quantum resources to improve accuracy?

Idea: drop some of the G_j (and inferred terms) from noncontextual part, simulating them instead on the quantum computer.

⇒ reduces *m*, hence $H_{c.}$ becomes a Hamiltonian on more qubits (n - m - 1), and accuracy of overall approximation improves.

whole method = Contextual Subspace VQE (CS-VQE)

Up to this point: [KTL20].

Applying Contextual Subspace VQE to molecules

Figure: CS-VQE approximation errors versus number of qubits used on the quantum computer, for tapered molecular Hamiltonians. Black line is chemical accuracy.

Will Kirby

Applying Contextual Subspace VQE to molecules (cont'd)

Figure: Number of terms to simulate on the quantum computer in order to reach chemical accuracy using CS-VQE versus standard VQE.

Will Kirby

Exploiting Contextuality in VQE

- Maximum noncontextual part of a Hamiltonian is worst-case hard to find (but greedy heuristic works well for molecules).
- Noncontextual ground state is worst-case hard to find, but isn't worse than original VQE (and Monte Carlo + optimization seems to work well).
- Order to move qubits from noncontextual part to quantum part might be worst-case hard to find (but greedy heuristic works well for molecules).

- William M. Kirby and Peter J. Love. Contextuality test of the nonclassicality of variational quantum eigensolvers. *Phys. Rev. Lett.*, 123:200501, Nov 2019.
- William M. Kirby and Peter J. Love. Classical simulation of noncontextual pauli hamiltonians. *Phys. Rev. A*, 102:032418, Sep 2020.
- William M. Kirby, Andrew Tranter, and Peter J. Love. Contextual subspace variational quantum eigensolver. arXiv:2011.10027, 2020.
- Robert W. Spekkens. Quasi-Quantization: Classical Statistical Theories with an Epistemic Restriction, pages 83–135. Springer Netherlands, Dordrecht, 2016.