Exploiting Contextuality in Variational Quantum Eigensolvers

Will Kirby¹, Andrew Tranter^{1,2}, and Peter Love^{1,3}
¹Department of Physics and Astronomy, Tufts University, Medford, MA 02155
²Cambridge Quantum Computing, Cambridge, CB2 1UB United Kingdom
³Computational Science Initiative, Brookhaven National Laboratory, Upton,
NY 11973

4th Workshop on Quantum Contextuality in Quantum Mechanics and Beyond

May 19, 2021

Outline

Contextuality of VQE [KL19]

Quasi-quantized (phase-space) model for noncontextual VQE [KL20]

3 Approximation method for contextual VQE [KTL21]

Variational quantum eigensolver

Goal: find ground state energy of

$$H=\sum_{P\in\mathcal{S}}h_PP,$$

for Pauli operators P in some set S.

Method:

Main process: on classical computer, minimize

$$E(\vec{\theta}) = \langle \psi(\vec{\theta}) | H | \psi(\vec{\theta}) \rangle = \sum_{P \in \mathcal{S}} h_P \langle \psi(\vec{\theta}) | P | \psi(\vec{\theta}) \rangle$$

for ansatz $|\psi(\vec{\theta})\rangle$.

② Iteration step: on quantum computer, estimate $\langle P \rangle$ for each $P \in \mathcal{S}.$

Variational quantum eigensolver

Want to understand where "quantumness" appears in this algorithm.

$$H = \sum_{P \in \mathcal{S}} h_P P$$

 \Rightarrow Focus on S.

Given S, suppose you want to construct a classical, realistic model (think HVM). This consists of:

- lacktriangledown joint value assignments to \mathcal{S} (the "classical, real" values).
- probability distributions over the joint value assignments:

Strong contextuality: when is it possible versus impossible to construct the joint value assignments?

Focus on joint value assignments (strong contextuality).

Any commuting subset of S is simultaneously measurable.

 $P,Q \in \mathcal{S}$ and $[P,Q] = 0 \implies$ by measuring P and Q infer value assigned to PQ (since joint value assignment interpreted as "real" values for \mathcal{S}).

Example. $S = \{XI, IX\} \Rightarrow \text{ for assignment } \{\pm 1, \pm 1\} \text{ to } S$, can infer assignment to XX:

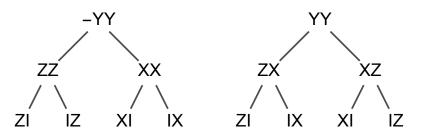
Focus on joint value assignments (strong contextuality).

Any commuting subset of S is simultaneously measurable.

 $P,Q \in \mathcal{S}$ and $[P,Q] = 0 \implies$ by measuring P and Q infer value assigned to PQ (since joint value assignment interpreted as "real" values for \mathcal{S}).

 ${\cal S}$ is contextual if any joint values necessarily violate some such inference.

Example: Peres-Mermin square $\Leftrightarrow S = \{XI, IX, ZI, IZ\}.$



 \Rightarrow \forall joint value assignments to \mathcal{S} , we infer that YY and -YY have the same value \Rightarrow contradiction! \Rightarrow \mathcal{S} is contextual.

Result [KL19]. S is *noncontextual* iff it has the form

$$\mathcal{S} = \mathcal{Z} \cup \mathcal{T} = \mathcal{Z} \cup \mathcal{C}_1 \cup \mathcal{C}_2 \cup \cdots \cup \mathcal{C}_N,$$

where commutation is an equivalence relation on \mathcal{T} ($\mathcal{C}_i = \text{equivalence}$ classes), and any $A \in \mathcal{Z}$ commutes with any $B \in \mathcal{S}$.

Definition. Hamiltonian H (VQE instance) is noncontextual iff its set S of Pauli terms is noncontextual.

Classical simulation of noncontextual Hamiltonians

⇒ can recover Hamiltonian terms by inference on

$$G \cup \{A_1\} \cup \{A_2\} \cup \cdots \cup \{A_N\},\$$

where G is independent generating set for \mathcal{Z} , and $A_i \in C_i$.

⇒ every noncontextual Hamiltonian has the form:

$$H = \sum_{B \in \overline{G}} \left(h_B B + \sum_{i=1}^N h_{B,i} B A_i \right).$$

Allowed probability distributions lead to following sets of expectation values:

$$\langle G_i \rangle = q_i = \pm 1, \quad \langle A_i \rangle = r_i$$

for $|\vec{r}| = 1$. Can prove these are enough to generate all possible expectation values of Hamiltonian.

Classical simulation of noncontextual Hamiltonians

Given any noncontextual H...

Result [KL20]. For parameters $q_j = \pm 1$ and $|\vec{r}| = 1$.

$$\langle H \rangle_{(\vec{q},\vec{r})} = \sum_{B \in \overline{G}} \left(h_B + \sum_{i=1}^N h_{B,i} r_i \right) \prod_{j \in \mathcal{J}_B} q_j,$$

for \mathcal{J}_B s.t. $B = \prod_{j \in \mathcal{J}_B} G_j$.

Classical objective function of at most 2n + 1 real parameters.

Immediate consequences:

- "dequantization" of noncontextual VQE.
- 2 noncontextual Hamiltonian problem is in NP.

Hybrid simulation of contextual Hamiltonians

Given any arbitrary H, can partition:

$$H = H_{\text{n.c.}} + H_{\text{c.}}$$

where $H_{n,c}$ is noncontextual and as large as possible.

Noncontextual ground state $(\vec{q}, \vec{r})_0$ of $H_{\text{n.c.}}$ corresponds to subspace of quantum states: common eigenspace of G_j (eigenvalues q_j) and

$$\mathcal{A} \equiv \sum_{i=1}^{N} r_i A_i$$
 (eigenvalue +1).

On quantum computer, can minimize expectation value of $H_{c.}$ within this subspace to obtain correction to noncontextual ground state energy.

Contextual Subspace VQE (CS-VQE)

Result [KTL21].

$$H = H_{\text{n.c.}} + H_{\text{c.}}$$

 $\langle H_{\rm n.c.} \rangle$ is determined classically, $\langle H_{\rm c.} \rangle$ is determined quantumly.

Each "stabilizer" G_j and A removes one qubit's worth of freedom from the quantum search space, so H_c becomes Hamiltonian on n-1-|G| qubits.

Can we use more quantum resources to improve accuracy?

Yes. Drop some of the G_j (and inferred terms) from noncontextual part, simulating them instead on the quantum computer.

Applying Contextual Subspace VQE to molecules

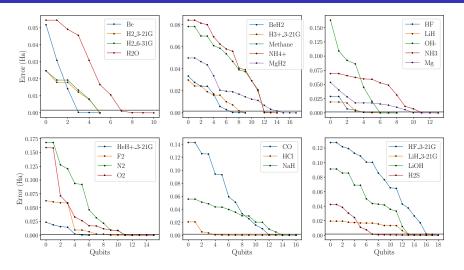


Figure: CS-VQE approximation errors versus number of qubits used on the quantum computer, for tapered Hamiltonians. Black line is chemical accuracy.

Thank you! Any questions?

- William M. Kirby and Peter J. Love. Contextuality test of the nonclassicality of variational quantum eigensolvers. *Phys. Rev. Lett.*, 123:200501, Nov 2019.
- William M. Kirby and Peter J. Love. Classical simulation of noncontextual pauli hamiltonians. *Phys. Rev. A*, 102:032418, Sep 2020.
- William M. Kirby, Andrew Tranter, and Peter J. Love. Contextual Subspace Variational Quantum Eigensolver. *Quantum*, 5:456, May 2021.
- Robert W. Spekkens. *Quasi-Quantization: Classical Statistical Theories with an Epistemic Restriction*, pages 83–135. Springer Netherlands, Dordrecht, 2016.

Code: https://github.com/wmkirby1/ContextualSubspaceVQE Funding: NSF Grants No. DGE-1842474, PHY-1720395, PHY-1818914, and Google Inc.