Improving Variational Quantum Algorithms by Isolating Nonclassicality

Will Kirby¹, Andrew Tranter^{1,2}, and Peter Love^{1,3} ¹Department of Physics and Astronomy, Tufts University, Medford, MA 02155 ²Cambridge Quantum Computing, Cambridge, CB2 1UB United Kingdom ³Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973

QCGSS Seminar @ Iowa State

February 19, 2021

Outline

General background

- Qubits
- Gates
- Measurements
- Example quantum circuit: generate a random bit
- Pauli operators

Quantum simulation

- Variational Quantum Eigensolver
- 3 Evaluating contextuality [KL19]
 - 4 Noncontextual Hamiltonians [KL20]
- 6 A new hybrid quantum-classical algorithm [KTL20]

Qubits

Bit = two-state classical system:

state space
$$= \{0, 1\}$$

Qubit = two-level quantum system:

state space
$$\equiv \mathcal{H}_2 = \{a_0|0
angle + a_1|1
angle \; : \; |a_0|^2 + |a_1|^2 = 1\}$$

Classical computer of n bits:

state space = {length
$$n$$
 bitstrings} = $\{0, 1\}^n$

Quantum computer of *n* qubits $\Rightarrow 2^n$ -dimensional Hilbert space:

s. s. =
$$\underbrace{\mathcal{H}_2 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_2}_{n \text{ copies}} = \left\{ \sum_b a_b | b \rangle : b = \text{length } n \text{ bitstrings} \right\}$$

Example. A quantum computer with 3 qubits:

state space =
$$\mathcal{H}_2^{\otimes 3} = \left\{ a_{000} | 000 \right\}$$

+ $a_{001} | 001 \rangle$
+ $a_{010} | 010 \rangle$
+ $a_{011} | 011 \rangle$
+ $a_{100} | 100 \rangle$
+ $a_{101} | 101 \rangle$
+ $a_{110} | 110 \rangle$
+ $a_{111} | 111 \rangle$: $\sum_b |a_b|^2 = 1 \right\}$

Can perform some set of unitary operations, which we often call gates.

Example. A quantum computer with 3 qubits:

operations
$$= \mathcal{U}(\mathcal{H}_2 \otimes \mathcal{H}_2 \otimes \mathcal{H}_2)$$

 $= 8 \times 8$ unitary matrices

Measure each qubit in $\{|0\rangle, |1\rangle\}$ basis (computational basis).

For bitstrings *b*, given a state $\sum_{b} a_{b} |b\rangle$, we get outcome $|b\rangle$ with probability $|a_{b}|^{2}$ (Born rule).

Example quantum circuit: generate a random bit

Needs quantum computer with 1 qubit: computational basis = $\{|0\rangle, |1\rangle\}$.

Algorithm:

$$|\psi_1\rangle = rac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1\\ 0 \end{pmatrix} = rac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} = rac{1}{\sqrt{2}} (|0\rangle + |1\rangle).$$

Measure in computational basis:

- Prob. of outcome $|0\rangle$ is $|\langle 0|\psi_1\rangle|^2 = |1/\sqrt{2}|^2 = 0.5$.
- Prob. of outcome $|1\rangle$ is $|\langle 1|\psi_1\rangle|^2 = |1/\sqrt{2}|^2 = 0.5$.

For example, *n* qubit Pauli operator:

$$P = \underbrace{\sigma_z \otimes I \otimes \sigma_x \otimes I \otimes \cdots \otimes \sigma_y \otimes \sigma_z}_{n \text{ Pauli matrices}} \equiv ZIXI \cdots YZ.$$

Facts:

- Hermitian, eigenvalues = $\pm 1 \Rightarrow$ self-inverse.
- Basis for Hermitian operators on n qubits.
- Solution P, Q either commute or anticommute.
- P, Q commute $\Leftrightarrow PQ = \pm R$ for Pauli R: e.g.,

 $(XXZI)(YYZX) = (X \otimes X \otimes Z \otimes I)(Y \otimes Y \otimes Z \otimes X) = -ZZIX.$

Usually means Hamiltonian simulation. Either...

- simulate time-evolution under given H, or...
- **2** calculate (part of) spectrum.

Typical problem: given H, find ground state energy.

Example. Two-qubit Hamiltonian¹:

 $H \approx 0.398ZI + 0.398IZ + 0.0113ZZ + 0.181XX.$

 $\Rightarrow \quad \text{eigenvalues} \approx -0.805, -0.192, 0.170, 0.827.$

¹A. Kandala *et al.*, Nature **549**, 242 (2017).

Variational quantum eigensolver

Goal: find ground state energy of

$$H=\sum_{P\in\mathcal{S}}h_PP,$$

for Pauli operators P in some set S.

Method:

Main process: on CC, minimize

$$E(\vec{\theta}) = \langle \psi(\vec{\theta}) | H | \psi(\vec{\theta}) \rangle = \sum_{P \in S} h_P \langle \psi(\vec{\theta}) | P | \psi(\vec{\theta}) \rangle$$

for ansatz $|\psi(\vec{\theta})\rangle = U(\vec{\theta})|\psi_0\rangle$.

2 Iteration step: on QC, estimate $\langle \psi(\vec{\theta})|P|\psi(\vec{\theta})\rangle$ for each $P \in S$.

Want to understand where/whether "quantumness" appears in this algorithm.

$$H=\sum_{P\in\mathcal{S}}h_PP$$

 \Rightarrow Focus on the set S of terms in Hamiltonian.

Contextuality of Pauli operators

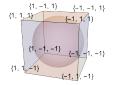
Given S, try to construct a classical, realistic model (think HVM):

- **1** joint value assignments to S.
- Ø probability distributions over the joint value assignments.

Example. $S = \{X, Y, Z\}$:

• joint value assignment = $v = \{\pm 1, \pm 1, \pm 1\}$.

2 probability distribution: p(v) = point in sphere:



Definition. S is *contextual* if joint values cannot be self-consistent.

How can a joint value assignment to \mathcal{S} be inconsistent?

Any commuting subset of S is simultaneously measurable.

So if $P, Q \in S$ and [P, Q] = 0, then from values assigned to P and Q we *infer* value assigned to PQ.

Example. $S = \{XI, IX\} \Rightarrow$ for assignment $\{\pm 1, \pm 1\}$ to S, can infer assignment to XX:

William M. Kirby and Peter J. Love, Phys. Rev. Lett. 123, 200501 (2019).

How can a joint value assignment to \mathcal{S} be inconsistent?

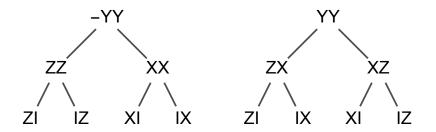
Any commuting subset of S is simultaneously measurable.

So if $P, Q \in S$ and [P, Q] = 0, then from values assigned to P and Q we *infer* value assigned to PQ.

S is contextual if any joint values necessarily violate some such inference.

William M. Kirby and Peter J. Love, Phys. Rev. Lett. 123, 200501 (2019).

Example. $S = \{XI, IX, ZI, IZ\}$:



Means that for any joint value assignment to S, we infer that YY and -YY have the same value \Rightarrow contradiction!

 \Rightarrow This S is contextual.

noncontextual = commuting X

A set of observables...

- is noncontextual iff no logical contradiction in assigning joint values.
- commutes iff ∃ *quantum state that realizes* joint values (common eigenstate).

commuting \Rightarrow noncontextual \checkmark

Result. S is *noncontextual* iff it has the form

 $\mathcal{S} = \mathcal{C} \cup \mathcal{T},$

where commutation is an equivalence relation on \mathcal{T} , and any $A \in \mathcal{C}$ commutes with any $B \in \mathcal{S}$.

Result. \mathcal{S} is *noncontextual* iff it has the form

$$\mathcal{S}=\mathcal{C}\cup\mathcal{T},$$

where commutation is an equivalence relation on \mathcal{T} , and any $A \in \mathcal{C}$ commutes with any $B \in \mathcal{S}$.

Special cases of noncontextual sets:

- any commuting set.
- 2 any anticommuting set.
- any set in which commutation is an equivalence relation (includes cases 1 and 2): for example, {(XI, XZ), (YI, YZ), (ZI, ZZ)}.

Result. S is *noncontextual* iff it has the form

$$\mathcal{S} = \mathcal{C} \cup \mathcal{T},$$

where commutation is an equivalence relation on \mathcal{T} , and any $A \in \mathcal{C}$ commutes with any $B \in \mathcal{S}$.

Corollary. Hamiltonian H (VQE instance) is noncontextual iff its set S of Pauli terms is noncontextual.

Noncontextual \Rightarrow can build classical model!

- **(**) phase space points = joint value assignments to S.
- states = probability distributions over phase space.

For *n*-qubit noncontextual Hamiltonian, probability distributions parametrized by $\vec{a} =$ at most 2n + 1 real parameters.

Can efficiently express expected energy as function of these:

$$\langle H \rangle = E(\vec{a}).$$

William M. Kirby and Peter J. Love, Phys. Rev. A 102, 032418 (2020).

Noncontextual H...

 \Rightarrow Classical function for energy:

$$\langle H \rangle = E(\vec{a}).$$

- \Rightarrow Can replace quantum part of VQE with this function.
- ⇒ variational quantum eigensolver (with classical objective function of $\leq 2n + 1$ real parameters).

Given arbitrary H, can partition:

 $H = H_{\rm n.c.} + H_{\rm c.},$

for $H_{n.c.}$ noncontextual, as large as possible.

Ground state \vec{a}_0 of $H_{n.c.}$ corresponds to common eigenspace of \mathcal{A} , some commuting set of operators that we can derive from $H_{n.c.}$.

On quantum computer, can minimize expectation value of $H_{c.}$ within this subspace to obtain correction to noncontextual ground state energy.

William M. Kirby, Andrew Tranter, and Peter J. Love, "Contextual subspace variational quantum eigensolver," arXiv preprint (2020), arXiv:2011.10027.

$$H = H_{\rm n.c.} + H_{\rm c.}$$

 $\langle H_{\rm n.c.} \rangle$ is determined classically, $\langle H_{\rm c.} \rangle$ is determined quantumly.

Each operator in A removes one qubit's worth of freedom, so $H_{c.}$ becomes a Hamiltonian on n - |A| qubits.

Example. If noncontextual ground state corresponds to common eigenspace of $\mathcal{A} = \{ZII, IZI\}$ with eigenvalues $\{1, -1\}$, then

$$\begin{aligned} H_{\rm c.} &= h_1 IIZ + h_2 IZZ + h_3 ZIX + h_4 ZZX + h_5 XII \\ \mapsto & H_{\rm reduced} = (h_1 - h_2)Z + (h_3 - h_4)X. \end{aligned}$$

$$H = H_{\rm n.c.} + H_{\rm c.}$$

 $\langle H_{\rm n.c.} \rangle$ is determined classically, $\langle H_{\rm c.} \rangle$ is determined quantumly.

Each operator in A removes one qubit's worth of freedom, so $H_{c.}$ becomes a Hamiltonian on n - |A| qubits.

Can we use more quantum resources to improve accuracy?

Idea: stop fixing eigenvalues of some of operators in \mathcal{A} to increase "resolution" of $H_{c.} \Rightarrow$ set # of qubits for $H_{c.}$ to any desired value.

Application to molecules

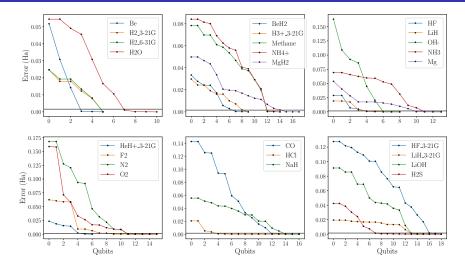


Figure: Approximation errors versus number of qubits used on the quantum computer, for molecular Hamiltonians. Black line is chemical accuracy.

Will Kirby

Improving VQE by Isolating Nonclassicality

- Given *H*, can determine whether contextual [KL19].
- 2 If noncontextual, simulate classically [KL20].
- If contextual, split into noncontextual part and contextual part, and trade off quantum resources for accuracy [KTL20].

- William M. Kirby and Peter J. Love. Contextuality test of the nonclassicality of variational quantum eigensolvers. *Phys. Rev. Lett.*, 123:200501, Nov 2019.
- William M. Kirby and Peter J. Love. Classical simulation of noncontextual pauli hamiltonians. *Phys. Rev. A*, 102:032418, Sep 2020.
- William M. Kirby, Andrew Tranter, and Peter J. Love. Contextual subspace variational quantum eigensolver. arXiv:2011.10027, 2020.