Noncontextuality in variational quantum algorithms

William M. Kirby¹ and Peter J. Love^{1,2}

¹Department of Physics, Tufts University; ²Brookhaven National Laboratory

March 3, 2020

$$\langle H
angle = \sum_{P \in \mathcal{S}} h_P \langle P
angle$$

 ${\cal S}$ is the set of Pauli operators whose expectation values are estimated in the VQE procedure.

What can we learn about the procedure from S?

S, a set of Pauli operators, is contextual if it is impossible to assign simultaneous values to the operators without contradiction.

Example. $S = \{ZI, IZ, XI, IX\}.$

S, a set of Pauli operators, is contextual if it is impossible to assign simultaneous values to the operators without contradiction.

Example. $S = \{ZI, IZ, XI, IX\}.$

S, a set of Pauli operators, is contextual if it is impossible to assign simultaneous values to the operators without contradiction.

Example. $S = \{ZI, IZ, XI, IX\}.$

S, a set of Pauli operators, is contextual if it is impossible to assign simultaneous values to the operators without contradiction.

Example. $S = \{ZI, IZ, XI, IX\}.$

Value assignments:

$$\begin{array}{c} ZI \mapsto V_{zi} \\ IZ \mapsto V_{iz} \\ XI \mapsto V_{xi} \\ IX \mapsto V_{ix} \end{array} \right\} \Longrightarrow \quad \boxed{-YY \mapsto V_{zi}V_{iz}V_{xi}V_{ix}}$$

$$YY \mapsto V_{zi} V_{iz} V_{xi} V_{ix}$$

A set ${\mathcal S}$ of Pauli operators is noncontextual if and only if it has the form

$$\mathcal{S}=\mathcal{Z}\cup \mathcal{C}_1\cup \mathcal{C}_2\cup\cdots\cup \mathcal{C}_N,$$

where

- \bullet operators in ${\mathcal Z}$ commute with all operators in ${\mathcal S},$
- operators in the same C_i commute, and
- operators in different C_i anticommute.¹

¹WMK and P. J. Love, Phys. Rev. Lett. **123**, 200501 (2019); arXiv:1904.02260.

A set ${\mathcal S}$ of Pauli operators is noncontextual if and only if it has the form

$$\mathcal{S}=\mathcal{Z}\cup \mathcal{C}_1\cup \mathcal{C}_2\cup\cdots\cup \mathcal{C}_N,$$

where

- operators in $\mathcal Z$ commute with all operators in $\mathcal S$,
- operators in the same C_i commute, and
- operators in different C_i anticommute.¹

What can we do with this?

¹WMK and P. J. Love, Phys. Rev. Lett. **123**, 200501 (2019); arXiv:1904.02260.

$$S = Z \cup C_1 \cup C_2 \cup \cdots \cup C_N,$$

Any Hamiltonian whose terms have this structure can be written in the form:

$$H = \underbrace{\sum_{B \in \overline{G}} h_B B}_{\text{terms in } \mathcal{Z}} + \underbrace{\sum_{B \in \overline{G}} \sum_{i=1}^{N} h_{B,i} B C_{i1}}_{\text{terms in } C_1 \cup C_2 \cup \dots \cup C_N},$$

where

- $\{C_{i1} \mid i = 1, 2, ..., N\}$ is an anticommuting set of Pauli operators one from each C_i ,
- G is an independent, commuting set of Pauli operators that also commute with the C_{i1} , and
- \overline{G} is the Abelian group generated by G^{2} .

²WMK and P. J. Love, arxiv:2002.05693.

- $\{C_{i1} \mid i = 1, 2, ..., N\}$ is an anticommuting set of Pauli operators one from each C_i ,
- G is an independent, commuting set of Pauli operators that also commute with the C_{i1} , and
- \overline{G} is the Abelian group generated by G.

So $\langle H \rangle$ is a function of the expectation values of G and $\{C_{i1} \mid i = 1, 2, ..., N\}$.

Allowed sets of expectation values: for each $G_j \in G$ and each C_{i1} ,

$$\langle G_j
angle = q_j$$
 and $\langle C_{i1}
angle = r_i$, such that $q_j = \pm 1$ and $|\vec{r}| = 1$.

If we define \mathcal{J}_B such that $B = \prod_{j \in \mathcal{J}_B} G_j$, then

$$\langle H
angle_{(\vec{q},\vec{r}\,)} = \sum_{B \in \overline{G}} \left(h_B + \sum_{i=1}^N h_{B,i} r_i
ight) \prod_{j \in \mathcal{J}_B} q_j,$$

where $q_j = \pm 1$ and $|\vec{r}| = 1$.

For each eigenvalue E of H, there exists (\vec{q}, \vec{r}) such that $\langle H \rangle_{(\vec{q}, \vec{r})} = E$.

For each eigenvalue E of H, there exists (\vec{q}, \vec{r}) such that $\langle H \rangle_{(\vec{q}, \vec{r})} = E$.

Consequences:

- The NONCONTEXTUAL HAMILTONIAN PROBLEM is in NP, since for every eigenvalue there exists a classical witness (\vec{q}, \vec{r}) .
- Can classically simulate noncontextual VQE using this objective function. Number of parameters (\vec{q}, \vec{r}) is at most 2n + 1 for *n* qubits. Not efficient in the worst case, but we can use heuristics as for other NP-complete problems.³

³WMK and P. J. Love, arxiv:2002.05693.

Noncontextual VQE looks like QAOA: a variational quantum algorithm to approximate a solution to an NP-complete problem.

So for noncontextual VQE, we should expect that the potential for quantum advantage reduces to choosing a clever ansatz, as in QAOA: there is no "quantumness" in the measurements.

Thank you!

Acknowledgements:

- W. M. K. acknowledges support from the National Science Foundation, Grant No. DGE-1842474.
- P. J. L. acknowledges support from the National Science Foundation, Grant No. PHY-1720395, and from Google Inc.
- This work was also supported by the NSF STAQ project (PHY-1818914).

References:

- WMK and P. J. Love, Phys. Rev. Lett. 123, 200501 (2019); arXiv:1904.02260.
- WMK and P. J. Love, arxiv:2002.05693.

Thank you for your attention!