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In this work, we describe how contextuality may be identified and used to advantage in varia-
tional quantum eigensolvers (VQEs). Contextuality, which can appear in preparations, transfor-
mations, or measurements, is a feature of quantum mechanics that distinguishes it from classical
physics [1–7]. In the context of VQEs, it is most natural to consider measurement contextuality,
since the quantum component of a variational eigensolver consists of a series of ansatz preparations
and measurements [8].

We focus on the most typical variant of VQE, in which the goal is to estimate the ground state
energy of some Hamiltonian H [9]. This is accomplished by decomposing H into a linear combina-
tion of easily-measurable terms, preparing an ansatz, and estimating the expectation value of each
term separately on the quantum computer. Then, classically, the expectation values of the terms
are combined to obtain an expectation value for H, which is used to update the ansatz param-
eters. The quantum part of the procedure is therefore characterized by the set of measurements
performed, i.e., the set of terms in the Hamiltonian. Hence, if we wish to identify contextuality in
a VQE instance, the natural choice is to consider contextuality of the terms in the Hamiltonian.

A set of observables is contextual if it does not admit any self-consistent joint value assignments
[8]. Inconsistencies in joint value assignments may arise due to inference, which refers to the
following relation: if two observables A and B commute, then the value assigned to their product
must be the product of their assigned values. This follows because an observer could measure A and
B simultaneously, and thus infer the value of their product. The classic example of contextuality
arising from such inference relations is the Peres-Mermin square [4–6], shown in Table I. For
example, the first column of the square illustrates the fact that the value of XZ must be the
product of the values of XI and IZ, while the last column of the table illustrates the fact that the
value of −Y Y must be the product of the values of XX and ZZ. However, there is no assignment
of values to the complete square that satisfies all such inference relations, so the set of observables
in the square is contextual.

Implementations of VQE typically use the Pauli decomposition of H:

H =
∑
P∈S

hPP, (1)

where S is some set of Pauli operators P , and hP are real coefficients. We wish to evaluate
contextuality of the set S, the measurements to be performed in the procedure. The first part

XI IX XX +1
IZ ZI ZZ +1
XZ ZX Y Y +1
+1 +1 −1

TABLE I. The Peres-Mermin square [4–6]. The observables in the square are two-qubit Pauli operators
(tensor product symbols omitted). The observables commute within each row and column, and the product
of each row or column is ±1 (shown outside the lines). There is no assignment of values (±1) to the
observables that satisfies all six commuting products.
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of this work [8] consists of proving a necessary and sufficient condition for noncontextuality of a
set S of Pauli operators: for Z ⊆ S defined to contain all operators that commute with all other
operators in S, commutation is an equivalence relation on S \ Z if and only if S is noncontextual.

Given a noncontextual set of Pauli operators, there exist joint value assignments, so we should be
able to construct probability distributions (corresponding to quantum states) over these joint value
assignments. These probability distributions provide joint sets of expectation values for the Pauli
operators, which are exactly what we need in order to reproduce the original VQE procedure. We
can think of this as a classical phase-space description of a noncontextual Hamiltonian, where an
uncertainty relation is imposed in the form of a restriction on the allowed probability distributions.
This is demonstrated in the second part of this work [10]. The joint sets of expectation values are
parametrized by at most 2n + 1 real numbers for a Hamiltonian on n qubits, giving an expression
for the expectation value of the Hamiltonian as a classical objective function:

〈H〉 = E(~q, ~r). (2)

Here E is a polynomial (with polynomially-many terms) of the real parameters (~q, ~r), which satisfy
qi = ±1 and |~r| = 1.

One immediate consequence of the classical expression (2) for the energy is that we can perform
a classical gradient search over the parameter space (~q, ~r) using this objective function rather
than estimating expectation values on a quantum computer. Thus, we have “dequantized” the
VQE procedure for a noncontextual Hamiltonian, although it is not impossible that the quantum
version could still afford an advantage due to the difference in how the ansatz parameters enter
the objective function.

The other immediate consequence is that the noncontextual Hamiltonian problem — the
decision problem of whether the ground state energy of a noncontextual Hamiltonian lies below
a given energy gap [a, b] such that b − a ≥ 1/poly(n) — is in NP. If the ground state energy
is less than a, then there exists a parameter setting (~q0, ~r0) that witnesses this, i.e., such that
〈H〉0 = E(~q0, ~r0) < a. Since the function E is a polynomial with polynomially-many terms, it can
be evaluated classically efficiently, providing a classical proof that 〈H〉0 < a.

In the third and final part of this work [11], we show how to partition an arbitrary Hamiltonian
into a noncontextual part and its complement, which will in general be contextual. By choosing
the noncontextual part to be as large as possible, we can take the ground state energy of the non-
contextual part (found via classical simulation) to be an initial approximation to the ground state
energy of the full Hamiltonian. We then identify the subspace of quantum states that are consistent
with the noncontextual ground state. By minimizing the expectation value of the remaining terms
within this subspace (using VQE on a quantum computer), we can obtain a quantum correction
to the initial noncontextual approximation.

The quantum correction subspace corresponding to a noncontextual state with parameters (~q, ~r)
is the joint eigenspace of a set of commuting observables G∪{A}, determined during construction
of the noncontextual objective function (2). G is an independent set of Pauli operators whose
eigenvalues are the entries in ~q, while A is a rotated Pauli operator determined by ~r. The rotation
that maps A to a single Pauli operator may be taken to leave G invariant, so the quantum correction
subspace is a stabilizer subspace to which a rotation has been applied that preserves all but one
of the stabilizers. We call this subspace the contextual subspace, because it encodes the degrees of
freedom that are left when the noncontextual degrees of freedom have been factored out.

The remaining terms form a new Hamiltonian when restricted to the contextual subspace. This
restricted Hamiltonian is smaller than the original Hamiltonian by one qubit per stabilizer (in
the set G ∪ {A}) of the contextual subspace, so the quality of the quantum correction obtained
by minimizing the energy of the restricted Hamiltonian also depends on the dimension of the
subspace. If we discard some of the stabilizers, the noncontextual approximation becomes worse,
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but the quantum correction becomes better as the contextual subspace grows, and we prove that
the overall approximation either stays the same or improves. Eventually, if we throw away all of
the stabilizers, we recover full VQE. However, the more stabilizers we throw away, the larger the
quantum correction Hamiltonian becomes in both qubits and terms. Thus, we have a parameter
that we can adjust to use more quantum resources to get better accuracy. We call this method
contextual subspace VQE, or CS-VQE.
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FIG. 1. The left plot shows CS-VQE approximation errors versus number of qubits used on the quantum
computer, for tapered molecular Hamiltonians for H2S and N2. The right plot shows the same errors versus
the number of terms simulated on the quantum computer. The solid black lines indicate chemical accuracy.

We simulated applying CS-VQE to electronic-structure Hamiltonians, the most common current
application for VQE. In Fig. 1, we show as examples the results for H2S and N2. Fig. 1 plots the
overall approximation error against the number of qubits used on the quantum computer, and
against the number of terms simulated on the quantum computer. These examples illustrate
that we can achieve chemical accuracy using fewer qubits and terms than required for standard
VQE on tapered Hamiltonians. We have simulated CS-VQE on twenty-five molecular and atomic
Hamiltonians on up to eighteen qubits (after tapering off qubits using symmetries) and found
reductions in the resources required to reach chemical accuracy for all but three, all of which were
among the smaller instances (fewer than ten qubits). The number of qubits can be chosen to match
the available quantum processor, and reducing the number of terms can make the difference between
the computation being worthwhile and being too expensive. Based on these results, we hope that
CS-VQE can make it possible for smaller quantum computers to access larger applications.
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