< □ > < @ > < E > < E > E のQ@

Contextuality and quantum weirdness

William Kirby william.kirby@tufts.edu *Tufts University*

?	?	?	+1
?	?	?	+1
?	?	?	+1
-1	-1	-1	

October 22, 2021

OUTLINE

INTRODUCTION

SOME HISTORY Hidden variable models Contextuality: obstacle to classical description of nature

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MEASUREMENT CONTEXTUALITY The magic square Nonlocality and contextuality

CAN WE EXPLOIT THIS? An application of contextuality A limitation of contextuality Some history

MEASUREMENT CONTEXTUALITY 00000000

CAN WE EXPLOIT THIS? 00000

Can Quantum-Mechanical Description of physical reality be considered complete?

https://en.wikipedia.org/wiki/File:Albert_Einstein_at_the_age_of_three_(1882).jpg

INTRODUCTION	Some history	MEASUREMENT CONTEXTUALITY	CAN WE EXPLOIT THIS?
00	000000	00000000	00000

EPR criterion of reality:

"If, without in any way disturbing a system, we can predict with certainty the value of a physical quantity, then there exists an **element of reality** corresponding to that quantity." (boldface added)

https://brilliant-staff-media.s3-us-west-2.amazonaws.com/tiffany-wang/uckyVVMY6G.png

イロト イポト イヨト イヨト 二日

Dac

CLASSICAL ATTEMPT TO DESCRIBE ENTANGLEMENT

- Assign a *hidden variable* to each particle, whose values fix all measurement results for the particle.
- Then all measurements are interpreted as *revealing* preexisting values of the measured quantities.

THE RISE AND FALL OF HIDDEN VARIABLE MODELS...

▶ 1935: EPR — hidden variable models (HVMs).

SOME HISTORY

INTRODUCTION

- ▶ 1964: Bell's theorem ∃ test to distinguish quantum mechanics from local HVMs.
- ► 1966-67: Bell-Kochen-Specker theorem ∃ test to distinguish quantum mechanics from *noncontextual* HVMs.
- ► 1972 onward: better and better experimental tests of Bell's theorem rule out local HVMs.
- 2000 onward: better and better experimental tests of contextuality rule out noncontextual HVMs.¹

¹Nice new reference: Budroni *et al., Quantum Contextuality,* arXiv:2102.13036 (2021).

INTRODUCTION 00 SOME HISTORY

MEASUREMENT CONTEXTUALITY

CAN WE EXPLOIT THIS? 00000

MORE ABOUT HIDDEN VARIABLE MODELS

- Measurements can be compatible or incompatible.
- Measurements can have fixed relations, e.g., the product of outcomes of some three measurements might be fixed.

https://www.mouser.com/blog/Portals/11/quantumcube.JPG

MORE ABOUT HIDDEN VARIABLE MODELS

- *N* measurements $\Rightarrow 2^N$ joint value assignments.
- Fixed relations among measurements rule out some joint value assignments:
 - ► E.g., if *C* is the product of *A* and *B*, only possibilities are {+1, +1, +1}, {+1, -1, -1}, {-1, +1, -1}, {-1, -1, +1}.
- Observer's knowledge = probability distribution over joint value assignments (can reflect incompatibility).

Example:

value assignments = vertices, prob. distributions = points in sphere.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

DEFINITION OF CONTEXTUALITY

Contextuality: a system is *contextual* when it is impossible to construct a hidden variable model of this kind to describe it.

(Why is this called contextuality? We'll come back to that.)

But the model seemed so plausible... what could possibly go wrong?

THE MAGIC SQUARE²

System:

▶ Nine possible measurements (*A*, *B*, *C*, *D*, *E*, *F*, *G*, *H*, *I*):

Α	B	С	+1
D	E	F	+1
G	Η	Ι	+1
-1	-1	-1	

- Outcomes = ± 1 .
- Compatible if and only if in same row OR column.
- Product of row will always come out to +1, product of column to -1.

²N. D. Mermin, Phys. Rev. Lett. 65, 3373 (1990); A. Peres, J. Phys. A: Math. Gen. 24 L175 (1991); N. D. Mermin, Rev. Mod. Phys. 65, 803 (1993).

Α	B	С	+1
D	Ε	F	+1
G	Η	Ι	+1
-1	-1	-1	

Model:

- ► Set of joint outcomes (the "real" states).
- ► Set of probability distributions (our "knowledge").

Joint outcomes: there are 2⁹ if we ignore the product relations.

How many satisfy the product relations?

Α	B	C	+1
D	Ε	F	+1
G	Η	Ι	+1
-1	-1	-1	

Model:

- ► Set of joint outcomes (the "real" states).
- Set of probability distributions (our "knowledge").

Joint outcomes: there are 2^9 if we ignore the product relations.

• How many satisfy the product relations?

Zero.

Α	B	<i>C</i>	+1
D	E	F	+1
G	Η	Ι	+1
-1	-1	-1	

No assignment of ± 1 s to the magic square satisfies the product relations.

Row products \Rightarrow total number of assigned -1s is even. Column products \Rightarrow total number of assigned -1s is odd.

Α	B	C	+1
D	E	F	+1
G	Η	Ι	+1
-1	-1	-1	

No assignment of ± 1 s to the magic square satisfies the product relations.

BUT...

∃ physical (quantum mechanical) system whose measurements have these compatibility and product relations!

 No hidden variable model for this system is possible, and we say that it is *contextual*.

ASIDE: OBSERVABLES AND PAULI OPERATORS

Quantum mechanical measurements \sim operators called <code>observables</code>.

Example: Pauli matrices

$$X = \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad Y = \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad Z = \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

▶ $2 \times 2 \Rightarrow$ observables on two-level system = *qubit*.

- Eigenvalues = $\pm 1 \Leftrightarrow \text{outcomes} = \pm 1$.
- Pairs anticommute, e.g., XY = -YX.
- $\blacktriangleright XY = iZ, \quad YZ = iX, \quad ZX = iY.$

ASIDE: OBSERVABLES AND PAULI OPERATORS

Two qubits \Rightarrow tensor products of Pauli matrices and 2 × 2 identity *I* form 16 *Pauli operators*

$$I \otimes I, \quad I \otimes X, \quad X \otimes X, \quad X \otimes Y, \dots$$

Pauli matrices anticommute \Rightarrow Pauli operators either commute or anticommute, e.g.,

$$(I \otimes X)(X \otimes X) = X \otimes (X^2) = X \otimes I = (X \otimes X)(I \otimes X),$$

$$(I \otimes Z)(X \otimes X) = X \otimes (iY) = i(X \otimes Y) = -(X \otimes X)(I \otimes Z),$$

 $(Z \otimes Z)(X \otimes X) = (iY) \otimes (iY) = -(Y \otimes Y) = (X \otimes X)(Z \otimes Z).$

Some history

REALIZING THE MAGIC SQUARE

For example, product of bottom row is $+1 = +I \otimes I$:

$$(-X \otimes Z)(-Z \otimes X) = (XZ) \otimes (ZX) = (-iY) \otimes (iY) = Y \otimes Y$$

$$\Rightarrow \underbrace{(-X \otimes Z)(-Z \otimes X)}_{Y \otimes} (Y \otimes Y) = (Y \otimes Y)(Y \otimes Y) = I \otimes I.$$

<□> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

INTRODUCTION 00 Some history 0000000 MEASUREMENT CONTEXTUALITY

CAN WE EXPLOIT THIS?

NONLOCALITY AND CONTEXTUALITY

- Bell experiments rule out nonlocal HVMs; magic square (and similar) experiments rule out noncontextual HVMs.
- Magic square doesn't rely on no communication between qubits.
- Magic square is independent of quantum state.

<ロト < 団 > < 三 > < 三 > < 三 > < 三 < つへ ??</p>

WHY "CONTEXTUALITY"?

?	?	?	+1	
?	?	?	+1	
?	?	?	+1	
-1	-1	-1		

- Noncontextual HVM: assigned outcomes don't depend on context, where....
- ► the *context* for the measurement refers to which other compatible measurements are performed.

Introduction	Some history	Measurement contextuality	CAN WE EXPLOIT THIS?
00	0000000	000000000	
00	0000000	00000000	00000

AN APPLICATION OF CONTEXTUALITY

Variational quantum eigensolver: given Hamiltonian

$$H=\sum_{P}h_{P}P,$$

where *P* are Pauli operators on *n* qubits and h_P are real coefficients, estimate ground state energy.

Method:

- 1. Prepare "guess" state ("ansatz") on quantum computer.
- 2. Measure *P*.
- 3. Repeat 1 and 2 over and over to estimate $\langle P \rangle$ for each *P*.
- 4. Classically combine:

$$\langle H \rangle = \sum_{P} h_P \langle P \rangle.$$

5. Vary ansatz and return to step 1.

AN APPLICATION OF CONTEXTUALITY

Variational quantum eigensolver: characterized by measurements of Pauli operators in Hamiltonian. So...

- Can classify VQE instances by whether or not they exhibit contextuality:
 - ► ∃ necessary and sufficient condition for contextuality of any set of *n*-qubit Pauli operators:³

Set is contextual iff it contains a subset of four Pauli operators with any of above commutation relations (edge \Leftrightarrow commutes).

EXTENSIONS AND APPLICATIONS

- Complexity of finding ground states of noncontextual Hamiltonians is in NP, rather than QMA.⁴.
- ► \Rightarrow Screening potential quantum simulation instances.
- Splitting Hamiltonian into noncontextual part to be simulated classically and noncontextual part to be simulated 'quantumly'.⁵
- Whether and to what extent the contextual structure of a molecular Hamiltonian relates to its chemistry (future work for some enterprising person).

⁴W. Kirby and P. Love, Phys. Rev. A 102, 032418 (2020)

⁵W. Kirby, A. Tranter, and P. Love, Quantum 5, 456 (2021) + () + () + ()

A LIMITATION OF CONTEXTUALITY

Stabilizer subtheory:

- Allowed states: *stabilizer states* = eigenstates of (CCS) Pauli operators.
- Allowed operations: map stabilizer states to stabilizer states.
- Allowed measurements: Pauli measurements.

Gottesman-Knill Theorem⁶ (roughly): the stabilizer subtheory can be simulated classically efficiently.

But, stabilizer subtheory contains contextuality: magic square!

 \Rightarrow Quantum advantage over classical computation cannot be explained entirely by contextuality.

⁶S. Aaronson and D. Gottesman, Phys. Rev. A 70, 052328 (2004) → < = → = → へ ~

INTRODUCTION 00	Some history 0000000	Measurement contextuality	Can we exploit this? 0000
THANK YOU	J !		

Any questions?

Figure: A quantum computer.

https://networkposting.com/wp-content/uploads/2017/09/quantum-computing-1.jpg